RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Time-optimal Trajectory Generation Approach with Non-uniform B-splines

      한글로보기

      https://www.riss.kr/link?id=A107918902

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a novel optimization-based approach to compute time-optimal trajectories for robotic systems operating in an environment with the presence of obstacles under kinodynamic constraints. The proposedapproach employs a modified rapid ex...

      This paper presents a novel optimization-based approach to compute time-optimal trajectories for robotic systems operating in an environment with the presence of obstacles under kinodynamic constraints. The proposedapproach employs a modified rapid exploring random tree algorithm (RRT) to generate a geometrical sub-optimal path inside a feasible safe region. Subsequently, a trajectory is parametrized by fourth order non-uniform B-splinesand is optimized along the path with respect to kinodynamic constraints by an interior point optimizer. The optimization process is performed in the safe region without any further collision checking, which is very effective in extremely confined and complex environments. Finally, the potential and efficiency of the approach is illustrated and compared with the notable RRT∗ algorithm in state space by numerical simulations.

      더보기

      참고문헌 (Reference)

      1 P. Lambrechts, "Trajectory planning and feedforward design for electromechanical motion systems" 12 (12): 145-157, 2005

      2 Y. Kuwata, "Trajectory Planning for Unmanned Vehicles Using Robust Receding Horizon Control" Massachusetts Institute of Technology 2006

      3 D. Fox, "The dynamic window approach to collision avoidance" 4 (4): 23-33, 1997

      4 S. Karaman, "Sampling-based algorithms for optimal motion planning" 30 (30): 846-294, 2011

      5 T. Schouwenaars, "Safe Trajectory Planning of Autonomous Vehicles" Massachusetts Institute of Technology 2006

      6 B. D. Luders, "Robust sampling-based motion planning with asymptotic optimality guarantees" 5072-5097, 2013

      7 S. U. Lee, "Robust sampling-based motion planning for autonomous tracked vehicles in deformable high slip terrain" 2569-2574, 2016

      8 M. Boukens, "Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots" 92 : 30-40, 2017

      9 J. B. Bruce, "Real-time Motion Planning and Safe Navigation in Dynamic Multirobot Environments" Carnegie Mellon University 2006

      10 L. M. Steven, "Randomized kinodynamic planning" 20 (20): 378-400, 2001

      1 P. Lambrechts, "Trajectory planning and feedforward design for electromechanical motion systems" 12 (12): 145-157, 2005

      2 Y. Kuwata, "Trajectory Planning for Unmanned Vehicles Using Robust Receding Horizon Control" Massachusetts Institute of Technology 2006

      3 D. Fox, "The dynamic window approach to collision avoidance" 4 (4): 23-33, 1997

      4 S. Karaman, "Sampling-based algorithms for optimal motion planning" 30 (30): 846-294, 2011

      5 T. Schouwenaars, "Safe Trajectory Planning of Autonomous Vehicles" Massachusetts Institute of Technology 2006

      6 B. D. Luders, "Robust sampling-based motion planning with asymptotic optimality guarantees" 5072-5097, 2013

      7 S. U. Lee, "Robust sampling-based motion planning for autonomous tracked vehicles in deformable high slip terrain" 2569-2574, 2016

      8 M. Boukens, "Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots" 92 : 30-40, 2017

      9 J. B. Bruce, "Real-time Motion Planning and Safe Navigation in Dynamic Multirobot Environments" Carnegie Mellon University 2006

      10 L. M. Steven, "Randomized kinodynamic planning" 20 (20): 378-400, 2001

      11 C. Danielson, "Path planning using positive invariant sets" 5986-5991, 2016

      12 Anugrah K. Pamosoaji, "PSO-based Minimum-time Motion Planning for Multiple Vehicles Under Acceleration and Velocity Limitations" 제어·로봇·시스템학회 17 (17): 2610-2623, 2019

      13 K. Reumann, "Optimizing curve segmentation in computer graphics" 1467-1472, 1974

      14 W. Andreas, "On the implementation of an interior-point filter line-search algorithm for largescale nonlinear programming" 106 (106): 25-57, 2006

      15 J. Canny, "On the complexity of kinodynamic planning" 306-316, 1988

      16 Ying Huang, "Motion Planning of Robot Manipulator Based on Improved NSGA-II" 제어·로봇·시스템학회 16 (16): 1878-1886, 2018

      17 D. J. Webb, "Kinodynamic RRT*:Asymptotically optimal motion planning for robots with linear dynamics" 5041-5061, 2013

      18 D. J.Webb, "Kinodynamic RRT*: Optimal motion planning for systems with linear differential constraints"

      19 P. R. Wurman, "Coordinating hundreds of cooperative, autonomous vehicles in warehouses" 29 (29): 9-, 2008

      20 J. H. Reif, "Complexity of the mover’s problem and generalizations" 421-427, 1979

      21 H. Kano, "Bsplines and control theory" 145 (145): 263-288, 2003

      22 R. H. Byrd, "An interior point algorithm for large-scale nonlinear programming" 9 (9): 877-900, 1999

      23 J. Zhang, "An enhanced optimization approach for generating smooth robot trajectories in the presence of obstacles" 263-268, 1995

      24 C. Sprunk, "An accurate and efficient navigation system for omnidirectional robots in industrial environments" 41 (41): 473-493, 2017

      25 Q. C. Pham, "Admissible velocity propagation: Beyond quasistatic path planning for high-dimensional robots" 36 (36): 44-67, 2017

      26 Boyang Zhang, "Adaptive Differential Evolution-based Receding Horizon Control Design for Multi-UAV Formation Reconfiguration" 제어·로봇·시스템학회 17 (17): 3009-3020, 2019

      27 M. Boukens, "A real time self-tuning motion controller for mobile robot systems" 6 (6): 1-13, 2018

      28 Z. Dong, "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks" 385 : 125401-, 2020

      29 M. Riedmiller, "A direct adaptive method for faster backpropagation learning: The Rprop algorithm" 586-591, 1993

      30 C. de Boor, "A Practical Guide to Splines" Springer-Verlag 1978

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼