RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      YOLOv10과 기존 객체 탐지 모델 성능 비교 분석

      한글로보기

      https://www.riss.kr/link?id=A109228338

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 최신 객체 탐지 모델인 YOLOv10과 이전 버전들 간의 성능을 비교 분석하였다. YOLOv10은 NMS-Free 훈련, 향상된 모델 아키텍처, 효율성 중심의 설계 등을 도입하여 뛰어난 성능을 보...

      본 논문에서는 최신 객체 탐지 모델인 YOLOv10과 이전 버전들 간의 성능을 비교 분석하였다. YOLOv10은 NMS-Free 훈련, 향상된 모델 아키텍처, 효율성 중심의 설계 등을 도입하여 뛰어난 성능을 보인다. COCO 데이터셋을 사용한 실험 결과, 특히 YOLOv10-N은 2.3M의 적은 파라미터 수와 6.7G의 부동 소수점 연산(FLOPs)으로도 39.5%의 높은 정확도와 1.84ms의 낮은 지연 시간을 유지하였다. 주요 성능 지표로는 모델 파라미터 수, FLOPs, 평균 정확도(AP), 지연 시간을 사용하였다. 분석 결과, YOLOv10은 다양한 응용 분야에서 실시간 객체 탐지 모델로서의 효과성을 확인하였다. 향후 연구로는 다양한 데이터셋 테스트와 모델 최적화, 응용 사례 확대 등을 제안하였다. 이를 통해 YOLOv10의 범용성과 효율성을 더욱 높일 수 있을 것이다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper presents a comparative analysis of the performance between the latest object detection model, YOLOv10, and its previous versions. YOLOv10 introduces NMS-Free training, an enhanced model architecture, and an efficiency-centric design, res...

      In this paper presents a comparative analysis of the performance between the latest object detection model, YOLOv10, and its previous versions. YOLOv10 introduces NMS-Free training, an enhanced model architecture, and an efficiency-centric design, resulting in outstanding performance. Experimental results using the COCO dataset demonstrate that YOLOv10-N maintains high accuracy of 39.5% and low latency of 1.84ms, despite having only 2.3M parameters and 6.7G floating-point operations (FLOPs). The key performance metrics used include the number of model parameters, FLOPs, average precision (AP), and latency. The analysis confirms the effectiveness of YOLOv10 as a real-time object detection model across various applications. Future research directions include testing on diverse datasets, further model optimization, and expanding application scenarios. These efforts aim to further enhance YOLOv10s versatility and efficiency.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 요약
      • I. Introduction
      • II. Preliminaries
      • III. The Proposed Scheme
      • Abstract
      • 요약
      • I. Introduction
      • II. Preliminaries
      • III. The Proposed Scheme
      • IV. Experience
      • V. Analysis
      • VI. Conclusions
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼