RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Robust Lane Recognition Technique for Vision-Based Navigation with a Multiple Clue-Based Filtration Algorithm

      한글로보기

      https://www.riss.kr/link?id=A104903984

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a novel multiple clue-based filtration algorithm (MCFA), which is developed to detect lane markings on roads using camera vision images for autonomous mobile robot navigation. The main goal of the algorithm is the robust estimation of the relative position and angle of the lane in the image by using multiple clues based on different characteristics of the lane. In particular, robustness against environmental changes is enhanced greatly since a dynamic model of the lane, be-sides static features of the lane such as color, intensity, etc., is incorporated for reliable estimation. The efficiency of the algorithm is verified through mobile robot experiments under various extreme illumi-nation conditions in outdoor environments. The increased robustness performance enables reliable closed-loop control of a mobile robot that operates in a variety of navigation-related missions.
      번역하기

      This paper proposes a novel multiple clue-based filtration algorithm (MCFA), which is developed to detect lane markings on roads using camera vision images for autonomous mobile robot navigation. The main goal of the algorithm is the robust estimation...

      This paper proposes a novel multiple clue-based filtration algorithm (MCFA), which is developed to detect lane markings on roads using camera vision images for autonomous mobile robot navigation. The main goal of the algorithm is the robust estimation of the relative position and angle of the lane in the image by using multiple clues based on different characteristics of the lane. In particular, robustness against environmental changes is enhanced greatly since a dynamic model of the lane, be-sides static features of the lane such as color, intensity, etc., is incorporated for reliable estimation. The efficiency of the algorithm is verified through mobile robot experiments under various extreme illumi-nation conditions in outdoor environments. The increased robustness performance enables reliable closed-loop control of a mobile robot that operates in a variety of navigation-related missions.

      더보기

      참고문헌 (Reference)

      1 A. Broggi, "Visual perception of obstacles and vehicles for platooning" 1 (1): 164-176, 2000

      2 O. Khalifa, "Visionbased lane detection for autonomous artificial intelligent vehicles" 636-641, 2009

      3 C. Thorpe, "Vision and Navigation: The Carnegie Mellon Navlab" Kluwer Academic Publishers 1990

      4 J. C. Rojas, "Vehicle detection in color images" 403-408, 1997

      5 K. Kluge, "The YARF system for vision-based road following" 22 (22): 213-233, 1995

      6 K. Kluge, "Statistical characterization of the visual characteristics of painted lane marking" IEEE Intelligent Vehicle Symp 488-493, 1995

      7 J. Crisman, "Scarf: a color vision system that tracks roads and intersections" 9 : 49-58, 1993

      8 F. Dellaert, "Robust car tracking using Kalman filtering and Bayesian templates" 72-83, 1997

      9 W. S. Wijesoma, "Roadboundary detection and tracking using ladar sensing" 20 (20): 456-464, 2004

      10 M. Nashman, "Real-time visual processing for autonomous driving" 373-378, 1993

      1 A. Broggi, "Visual perception of obstacles and vehicles for platooning" 1 (1): 164-176, 2000

      2 O. Khalifa, "Visionbased lane detection for autonomous artificial intelligent vehicles" 636-641, 2009

      3 C. Thorpe, "Vision and Navigation: The Carnegie Mellon Navlab" Kluwer Academic Publishers 1990

      4 J. C. Rojas, "Vehicle detection in color images" 403-408, 1997

      5 K. Kluge, "The YARF system for vision-based road following" 22 (22): 213-233, 1995

      6 K. Kluge, "Statistical characterization of the visual characteristics of painted lane marking" IEEE Intelligent Vehicle Symp 488-493, 1995

      7 J. Crisman, "Scarf: a color vision system that tracks roads and intersections" 9 : 49-58, 1993

      8 F. Dellaert, "Robust car tracking using Kalman filtering and Bayesian templates" 72-83, 1997

      9 W. S. Wijesoma, "Roadboundary detection and tracking using ladar sensing" 20 (20): 456-464, 2004

      10 M. Nashman, "Real-time visual processing for autonomous driving" 373-378, 1993

      11 Q. Lin, "Real-time lane departure detection based on extended edge-linking algorithm" 725-730, 2010

      12 D. Pomerleau, "Ralph: rapidly adapting lateral position handling" 506-511, 1995

      13 F. Dellaert, "Modelbased car tracking integrated with a road-follower" 1889-1894, 1998

      14 H.-Y. Cheng, "Lane detection with moving vehicles in the traffic scenes" 7 (7): 571-582, 2006

      15 S. Lakshmanan, "Lane detection for autonomous sensors" 2955-2958, 1995

      16 J. Lee, "Effective lane detection and tracking method using statistical modeling of color and lane edge-orientation" 1586-1591, 2009

      17 L. O’Gorman, "Binarization and multithresholding of document images using connectivity" 237-252, 1994

      18 A. Broggi, "Automatic Vehicle Guidance: The Experience of Argo Autonomous Vehicle" World Scientific 1999

      19 T. J. M. Chen, "Aurora: a visionbased roadway departure warning system" 243-248, 1995

      20 R. Y. Tsai, "A verstile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses" RA-3, (RA-3,): 323-344, 1987

      21 J. Illingworth, "A survey of the Hough transform" 43 : 221-238, 1988

      22 S. S. L. Raphael Labayrade, "A reli-able road lane detector approach combining two vision- based algorithms" 2004

      23 R. Aufrère, "A modeldriven approach for real-time road recognition" 13 (13): 95-107, 2001

      24 A. Broggi, "A massively parallel approach to realtime vision-based road marking detection" 84-89, 1995

      25 K. A. Redmill, "A lane tracking system for intelligent vehicle application" IEEE Intelligent Transportation Systems 273-279, 2001

      26 K. Kluge, "A deformable template approach to lane detection" 54-59, 1995

      27 S. Nedevschi, "3D lane detection system based on stereovision" IEEE Intelligent Transportation Systems 161-166, 2004

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼