RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Local multiquadric scheme for solving two‐dimensional weakly singular Hammerstein integral equations

      한글로보기

      https://www.riss.kr/link?id=O119688385

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2019년

      • 작성언어

        -

      • Print ISSN

        0894-3370

      • Online ISSN

        1099-1204

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The main purpose of this article is to present a numerical method for solving two‐dimensional Fredholm‐Hammerstein integral equations of the second kind with weakly singular kernels. The scheme utilizes locally supported (inverse) multiquadric functions constructed on scattered points as a basis in the discrete collocation method. The local (inverse) multiquadrics estimate a function in any dimensions via a small set of data instead of all points in the solution domain. The proposed method uses a special accurate quadrature formula based on the nonuniform Gauss‐Legendre integration rule for approximating singular integrals appeared in the scheme. In comparison with the globally supported (inverse) multiquadric for the numerical solution of integral equations, the proposed method is stable and uses much less computer memory. Moreover, the algorithm of the presented approach is attractive and easy to implement on computers. Since the scheme does not require any mesh generations on the domain, it can be identified as a meshless method. The error analysis of the method is provided. The convergence accuracy of the new technique is examined over several two‐dimensional Hammerstein integral equations and obtained results confirm the theoretical error estimates.
      번역하기

      The main purpose of this article is to present a numerical method for solving two‐dimensional Fredholm‐Hammerstein integral equations of the second kind with weakly singular kernels. The scheme utilizes locally supported (inverse) multiquadric fun...

      The main purpose of this article is to present a numerical method for solving two‐dimensional Fredholm‐Hammerstein integral equations of the second kind with weakly singular kernels. The scheme utilizes locally supported (inverse) multiquadric functions constructed on scattered points as a basis in the discrete collocation method. The local (inverse) multiquadrics estimate a function in any dimensions via a small set of data instead of all points in the solution domain. The proposed method uses a special accurate quadrature formula based on the nonuniform Gauss‐Legendre integration rule for approximating singular integrals appeared in the scheme. In comparison with the globally supported (inverse) multiquadric for the numerical solution of integral equations, the proposed method is stable and uses much less computer memory. Moreover, the algorithm of the presented approach is attractive and easy to implement on computers. Since the scheme does not require any mesh generations on the domain, it can be identified as a meshless method. The error analysis of the method is provided. The convergence accuracy of the new technique is examined over several two‐dimensional Hammerstein integral equations and obtained results confirm the theoretical error estimates.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼