<P>Viable mesenchymal stem cells (MSCs) were efficiently and selectively harvested by near-infrared (NIR) light using the photothermal effect of a conductive polymer nano thin film. The poly(3,4-ethylenedioxy thiophene) (PEDOT)-coated cell cultu...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107611732
2013
-
SCOPUS,SCIE
학술저널
4119-4128(10쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Viable mesenchymal stem cells (MSCs) were efficiently and selectively harvested by near-infrared (NIR) light using the photothermal effect of a conductive polymer nano thin film. The poly(3,4-ethylenedioxy thiophene) (PEDOT)-coated cell cultu...
<P>Viable mesenchymal stem cells (MSCs) were efficiently and selectively harvested by near-infrared (NIR) light using the photothermal effect of a conductive polymer nano thin film. The poly(3,4-ethylenedioxy thiophene) (PEDOT)-coated cell culture surfaces were prepared <I>via</I> a simple and fast solution-casting polymerization (SCP) technique. The absorption of PEDOT thin films in the NIR region was effectively triggered cell harvesting upon exposure to an NIR source. By controlling the NIR absorption of the PEDOT film through electrochemical doping or growing PEDOT with different thin film thickness from 70 to 300 nm, the proliferation and harvesting of MSCs on the PEDOT surface were controlled quantitatively. This light-induced cell detachment method based on PEDOT films provides the temporal and spatial control of cell harvesting, as well as cell patterning. The harvested stem cells were found to be alive and well proliferated despite the use of temperature increase by NIR. More importantly, the harvested MSCs by this method preserved their intrinsic characteristics as well as multilineage differentiation capacities. This PEDOT surfaces could be used for repetitive culture and detachment of MSCs or for efficient selection or depletion of a specific subset from heterogeneous population during culture of various tissue-derived cells because there were no photodegradation and photobreakage in the PEDOT films by NIR exposure.</P><P><B>Graphic Abstract</B>
<IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2013/ancac3.2013.7.issue-5/nn400405t/production/images/medium/nn-2013-00405t_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nn400405t'>ACS Electronic Supporting Info</A></P>
Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode
Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells
Exploiting Plasmon-Induced Hot Electrons in Molecular Electronic Devices