RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

      한글로보기

      https://www.riss.kr/link?id=A105257531

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.
      번역하기

      In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constra...

      In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

      더보기

      참고문헌 (Reference)

      1 Tayebi A, "Unit quaternion-based output feedback for the attitude tracking problem" 53 (53): 1516-1520, 2008

      2 Wen JT-Y, "The attitude control problem" 36 (36): 1148-1162, 1991

      3 Zhang W, "Stable weighted multiple model adaptive control: discrete-time stochastic plant" 27 (27): 562-581, 2013

      4 Tsiotras P, "Stabilization and optimality results for the attitude control problem" 19 (19): 772-779, 1996

      5 Hassani V, "Stability analysis of robust multiple model adaptive control" 44 (44): 350-355, 2011

      6 Sidi MJ, "Spacecraft dynamics and control: a practical engineering approach. Cambridge aerospace series" Cambridge University Press 1997

      7 Wertz JR, "Spacecraft attitude determination and control, vol 73" Springer 1978

      8 Singh S, "Robust nonlinear attitude control of flexible spacecraft" AES-23 (AES-23): 380-387, 1987

      9 Capua A, "Robust nonlinear $H{\infty}$ output-feedback for spacecraft attitude control" 2014

      10 Hu Q, "Robust attitude control design for spacecraft under assigned velocity and control constraints" 52 (52): 480-493, 2013

      1 Tayebi A, "Unit quaternion-based output feedback for the attitude tracking problem" 53 (53): 1516-1520, 2008

      2 Wen JT-Y, "The attitude control problem" 36 (36): 1148-1162, 1991

      3 Zhang W, "Stable weighted multiple model adaptive control: discrete-time stochastic plant" 27 (27): 562-581, 2013

      4 Tsiotras P, "Stabilization and optimality results for the attitude control problem" 19 (19): 772-779, 1996

      5 Hassani V, "Stability analysis of robust multiple model adaptive control" 44 (44): 350-355, 2011

      6 Sidi MJ, "Spacecraft dynamics and control: a practical engineering approach. Cambridge aerospace series" Cambridge University Press 1997

      7 Wertz JR, "Spacecraft attitude determination and control, vol 73" Springer 1978

      8 Singh S, "Robust nonlinear attitude control of flexible spacecraft" AES-23 (AES-23): 380-387, 1987

      9 Capua A, "Robust nonlinear $H{\infty}$ output-feedback for spacecraft attitude control" 2014

      10 Hu Q, "Robust attitude control design for spacecraft under assigned velocity and control constraints" 52 (52): 480-493, 2013

      11 Chaturvedi N, "Rigid-body attitude control" 31 (31): 30-51, 2011

      12 Wie B, "Quaternion feedback for spacecraft large angle maneuvers" 8 (8): 360-365, 1985

      13 Lu Jianbo, "Nonlinear quaternion feedback control for spacecraft via angular velocity shaping" 1 : 632-636, 1994

      14 Han Z, "Newconcepts in adaptive control using multiple models" 57 (57): 78-89, 2012

      15 Maybeck PS, "Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems" 9 (9): 1051-1070, 1999

      16 Fekri S, "Issues, progress and new results in robust adaptive control" 20 (20): 519-579, 2006

      17 Ngo KB, "Integrator backstepping design for motion systems with velocity constraint" 141-146, 2004

      18 Seo D, "High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design" 31 (31): 884-891, 2008

      19 Tsiotras P, "Further passivity results for the attitude control problem" 43 (43): 1597-1600, 1998

      20 Markley FL, "Fundamentals of spacecraft attitude determination and control" Springer 2014

      21 Zou A-M, "Finite-time output feedback attitude tracking control for rigid spacecraft" 22 (22): 338-345, 2014

      22 Lizarralde F, "Attitude controlwithout angular velocity measurement: a passivity approach" 41 (41): 468-472, 1996

      23 Schaub H, "Analytical mechanics of space systems" American Institute of Aeronautics and Astronautics Inc 2014

      24 Singla P, "An adaptive attitude control formulation under angular velocity constraints" 2008

      25 Show L-L, "An LMI-based nonlinear attitude control approach" 11 (11): 73-83, 2003

      26 Singla P, "Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty" 29 (29): 892-902, 2006

      27 Guo Y, "Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix" 27 (27): 375-382, 2014

      28 Narendra KS, "Adaptive control using multiple models" 42 (42): 171-187, 1997

      29 Schaub H, "Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics" 24 (24): 95-100, 2001

      30 Lu K, "Adaptive attitude tracking control for rigid spacecraft with finite-time convergence" 49 (49): 3591-3599, 2013

      31 Bhat SP, "A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon" 39 (39): 63-70, 2000

      32 Salcudean S, "A globally convergent angular velocity observer for rigid body motion" 36 (36): 1493-1497, 1991

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 선정 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.2 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.394 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼