RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Phase Sensitivity to Acoustic Pressure of Microstrustured Optical Fibers : A comparison Study

      한글로보기

      https://www.riss.kr/link?id=A100424623

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, photonic crystal fibers (PCFs) have attracted many researchers because of their unique properties, and design flexibility that can’t be realized by conventional fibers. One of the fruitful areas of research is the optical fiber hydrophone. In this paper, the finite element solver (FES), COMSOL multiphysics, is used to study and compare the response to acoustic pressure of a hollow-core photonic band gap fiber (HC-PBF), a solid-core photonic crystal fiber (SC-PCF), and a conventional single-mode fiber (SMF) for different acoustic pressures in the frequency range from 10 kHz to 50 kHz. The key structural factors affect the sensitivity to acoustic pressure (S) of the microstructured fibers are studied and a mathematical formula describes the relation of S and the dominant structural factor is proposed. Simulation results of the investigated optical fibers show that the normalized responsivity (NR) of the HC-1550, LMA-5, and SMF are -344 dB, -367.5 dB, and -366 dB, respectively. The proposed simulation results are in good agreement with published theoretical and experimentally measured results. The proposed results indicate the significance of the HC-PBFs in the future hydrophone systems and are useful for the design of microstrustured optical fibers for sensing applications.
      번역하기

      Recently, photonic crystal fibers (PCFs) have attracted many researchers because of their unique properties, and design flexibility that can’t be realized by conventional fibers. One of the fruitful areas of research is the optical fiber hydrophone....

      Recently, photonic crystal fibers (PCFs) have attracted many researchers because of their unique properties, and design flexibility that can’t be realized by conventional fibers. One of the fruitful areas of research is the optical fiber hydrophone. In this paper, the finite element solver (FES), COMSOL multiphysics, is used to study and compare the response to acoustic pressure of a hollow-core photonic band gap fiber (HC-PBF), a solid-core photonic crystal fiber (SC-PCF), and a conventional single-mode fiber (SMF) for different acoustic pressures in the frequency range from 10 kHz to 50 kHz. The key structural factors affect the sensitivity to acoustic pressure (S) of the microstructured fibers are studied and a mathematical formula describes the relation of S and the dominant structural factor is proposed. Simulation results of the investigated optical fibers show that the normalized responsivity (NR) of the HC-1550, LMA-5, and SMF are -344 dB, -367.5 dB, and -366 dB, respectively. The proposed simulation results are in good agreement with published theoretical and experimentally measured results. The proposed results indicate the significance of the HC-PBFs in the future hydrophone systems and are useful for the design of microstrustured optical fibers for sensing applications.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Mathematical Model
      • 3. Simulation Results and Analysis
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Mathematical Model
      • 3. Simulation Results and Analysis
      • 4. Conclusion
      • Acknowledgments
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼