RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant

      한글로보기

      https://www.riss.kr/link?id=A107440813

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The techno-economic analysis of the CCPs was performed for a 300 MW class integrated coal gasification combined cycle (IGCC) power plant. In the study, the a-MDEA and Selexol processes were selected for the analysis as the representative of the chemical and physical solvent-based carbon capture process (CCPs). A rigorous evaluation of dual-stage CCPs, including power generation, economic evaluations, and exergy destruction, was performed. The net power of a-MDEA and Selexol processes was 267.3 MW and 291.4 MW, respectively, which corresponded to the thermal efficiencies of the dual-stage a-MDEA process of 32.3% and Selexol process of 35.2%. According to the economic analysis, the CAPEX of the Selexol process was approximately 1.39 times more expensive than that of the a-MDEA process. However, the OPEX of the Selexol process for removing a ton of CO<SUB>2</SUB> was approximately one third of that of the a-MDEA process. The exergy flow and destruction were also discussed to evaluate the associated impact on the major components of CCPs. Based on the exergy analysis, the suggestion to improve thermal efficiency was made and result was also briefly discussed. These results can aid in decision-making and in process development for commercial-scale CCPs with respect to thermodynamic and economic analyses.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Process simulation of dual-stage CCPs was carried out and used for thermodynamic and economic analysis. </LI> <LI> Technical analysis of dual-stage CCPs was performed to identify thermal and carbon capture efficiency. </LI> <LI> Economic performance of dual-stage CCPs was compared by CAPEX and OPEX. </LI> <LI> The direction of process improvement was suggested by means of exergy flow and destruction. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>The techno-economic analysis of the CCPs was performed for a 300 MW class integrated coal gasification combined cycle (IGCC) power plant. In the study, the a-MDEA and Selexol processes were sele...

      <P><B>Abstract</B></P> <P>The techno-economic analysis of the CCPs was performed for a 300 MW class integrated coal gasification combined cycle (IGCC) power plant. In the study, the a-MDEA and Selexol processes were selected for the analysis as the representative of the chemical and physical solvent-based carbon capture process (CCPs). A rigorous evaluation of dual-stage CCPs, including power generation, economic evaluations, and exergy destruction, was performed. The net power of a-MDEA and Selexol processes was 267.3 MW and 291.4 MW, respectively, which corresponded to the thermal efficiencies of the dual-stage a-MDEA process of 32.3% and Selexol process of 35.2%. According to the economic analysis, the CAPEX of the Selexol process was approximately 1.39 times more expensive than that of the a-MDEA process. However, the OPEX of the Selexol process for removing a ton of CO<SUB>2</SUB> was approximately one third of that of the a-MDEA process. The exergy flow and destruction were also discussed to evaluate the associated impact on the major components of CCPs. Based on the exergy analysis, the suggestion to improve thermal efficiency was made and result was also briefly discussed. These results can aid in decision-making and in process development for commercial-scale CCPs with respect to thermodynamic and economic analyses.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Process simulation of dual-stage CCPs was carried out and used for thermodynamic and economic analysis. </LI> <LI> Technical analysis of dual-stage CCPs was performed to identify thermal and carbon capture efficiency. </LI> <LI> Economic performance of dual-stage CCPs was compared by CAPEX and OPEX. </LI> <LI> The direction of process improvement was suggested by means of exergy flow and destruction. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼