RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Estimating equation for additive hazards model with censored length-biased data

      한글로보기

      https://www.riss.kr/link?id=A107246228

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Aalen’s additive hazards model plays a very important role in survival analysis. In this paper we are interested in the problem of estimating regression coefficients in the additive hazards model with censored length-biased data. Through both of the parametric invariance of the proportional likelihood ratio model and the unique structure of length-biased data, we propose a pairwise pseudo-likelihood estimating equation, which only relies on the complete residual lifetimes in censored length-biased data. In addition, two combined estimating equations are also considered to estimate covariate coefficients. These estimators are proved to be consistent and asymptotically normal. In order to evaluate the performance of the proposed estimators in a finite sample, some simulations are conducted. Finally, a real data example is also provided.
      번역하기

      Aalen’s additive hazards model plays a very important role in survival analysis. In this paper we are interested in the problem of estimating regression coefficients in the additive hazards model with censored length-biased data. Through both of the...

      Aalen’s additive hazards model plays a very important role in survival analysis. In this paper we are interested in the problem of estimating regression coefficients in the additive hazards model with censored length-biased data. Through both of the parametric invariance of the proportional likelihood ratio model and the unique structure of length-biased data, we propose a pairwise pseudo-likelihood estimating equation, which only relies on the complete residual lifetimes in censored length-biased data. In addition, two combined estimating equations are also considered to estimate covariate coefficients. These estimators are proved to be consistent and asymptotically normal. In order to evaluate the performance of the proposed estimators in a finite sample, some simulations are conducted. Finally, a real data example is also provided.

      더보기

      참고문헌 (Reference)

      1 Lihong Qi, "Weighted estimating equations for additive hazards models with missing covariates" Springer Science and Business Media LLC 71 (71): 365-387, 2019

      2 Shi, J., "The nonparametric quantile estimation for length-biased and rightcensored data" 134 : 150-158, 2018

      3 Chen, W., "The effect of sample size and censoring proportion on the power and bias of survival analysis models" 30 (30): 5-8, 2013

      4 Wicksell, S. D., "The corpuscle problem: A mathematical study of a biometric problem" 17 (17): 84-99, 1925

      5 Lancaster, T., "The Econometric analysis of transition data" Cambridge University Press 1990

      6 Huang, C. -Y., "Semiparametric estimation for the additive hazards modelwith left-truncated and right-censored data" 100 (100): 877-888, 2013

      7 Lin, D. Y., "Semiparametric analysis of the additive risk model" 81 (81): 61-71, 1994

      8 Shen, P. -S., "Semiparametric analysis of survival data with left truncation and right censoring" 53 : 4417-4432, 2009

      9 Chen, X., "Reweighting estimators for additive hazard model with censoring indicators missing at random" 24 (24): 224-249, 2018

      10 Cox, D. R., "Regression model and life table" 34 (34): 187-220, 1972

      1 Lihong Qi, "Weighted estimating equations for additive hazards models with missing covariates" Springer Science and Business Media LLC 71 (71): 365-387, 2019

      2 Shi, J., "The nonparametric quantile estimation for length-biased and rightcensored data" 134 : 150-158, 2018

      3 Chen, W., "The effect of sample size and censoring proportion on the power and bias of survival analysis models" 30 (30): 5-8, 2013

      4 Wicksell, S. D., "The corpuscle problem: A mathematical study of a biometric problem" 17 (17): 84-99, 1925

      5 Lancaster, T., "The Econometric analysis of transition data" Cambridge University Press 1990

      6 Huang, C. -Y., "Semiparametric estimation for the additive hazards modelwith left-truncated and right-censored data" 100 (100): 877-888, 2013

      7 Lin, D. Y., "Semiparametric analysis of the additive risk model" 81 (81): 61-71, 1994

      8 Shen, P. -S., "Semiparametric analysis of survival data with left truncation and right censoring" 53 : 4417-4432, 2009

      9 Chen, X., "Reweighting estimators for additive hazard model with censoring indicators missing at random" 24 (24): 224-249, 2018

      10 Cox, D. R., "Regression model and life table" 34 (34): 187-220, 1972

      11 Chen, X., "Quantile regression for right-censored and length-biased data" 28 : 443-462, 2012

      12 Blumenthal, S., "Proportional sampling in life length studies" 9 : 205-218, 1967

      13 Chan, K. C. G., "Proportional mean residual life model for right-censored length-biased data" 0 : 1093-, 2012

      14 Xu, J., "Proportional hazardmodel estimation under dependent censoring using copulas and penalized likelihood" 37 (37): 2238-2251, 2018

      15 McFadden, J. A., "On the lengths of intervals in a stationary point process" 24 : 364-382, 1962

      16 Sen, P. K., "On some convergence properties of U-statistics" 10 : 1-18, 1960

      17 Crouch, L. A., "On estimation of Covariate-Specific Residual Time Quantiles under the proportional Hazards Model" 22 (22): 299-319, 2016

      18 Chan, K. C. G., "Nuisance parameter elimination for proportional likelihood ratio models with nonignorable missingness and random truncation" 100 (100): 1-8, 2013

      19 Hongping Wu, "Nonparametric inference on mean residual life function with length-biased right-censored data" Informa UK Limited 49 (49): 2065-2079, 2020

      20 Huang, C. -Y., "Nonparametric estimation for length-biased and right-censored data" 98 : 177-186, 2011

      21 Wang, Y., "Nonparametric and Semiparametric estimation of quantile residual lifetime for length-biased and right-censored data" 45 (45): 220-250, 2017

      22 Wang, M. -S., "Nonparametric Estimation from Cross-Sectional Survival Data" 86 (86): 130-143, 1991

      23 Cox, D. R., "New Developments in Survey Sampling" wiley 1969

      24 Yin, G., "Model checking for additive hazards model with multivariate survival data" 98 : 1018-1032, 2007

      25 Aalen, O., "Mathematical Statistics and Probability Theory" Springer 1980

      26 Zhu, H., "Likelihood approaches for proportional likelihood ratio model with right-censored data" 33 (33): 2467-2479, 2014

      27 Lin, Y., "Lasso tree for cancer staging with survival data" 14 (14): 327-339, 2013

      28 Kim, J., "Goodness-of-fit tests for the additive risk model with(p>2)-dimensional time-invariant covariates" 4 : 405-416, 1998

      29 Ghosh, D., "Goodness-of-fit methods for additive risk models in tumorigenicity experiments" 59 : 721-726, 2003

      30 Guo, L., "Estimation under Cox proportional hazards model with covariates missing not at random" 46 (46): 8952-8972, 2017

      31 Chen, M., "Effect of difference censored rates between groups in clinical trails" 22 (22): 434-438, 2017

      32 Chen, C. -M., "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data" 24 (24): 250-272, 2018

      33 Huang, C. -Y., "Composite partial likelihood estimation under length-biased sampling, with application to a prevalent cohort study of Dementia" 107 : 946-957, 2012

      34 Ma, H., "Composite estimating equation approach for additive risk model with length-biased and right-censored data" 96 : 45-53, 2015

      35 Luo, X., "A proportional likelihood ratio model" 99 : 211-222, 2012

      36 Hoeffding, W., "A class of Statistics with Asymptotically Normal Distribution" 19 : 293-325, 1948

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-17 학술지명변경 한글명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      외국어명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.14 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.25 0.352 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼