RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑 = Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques

      한글로보기

      https://www.riss.kr/link?id=A107811626

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high ...

      In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

      더보기

      참고문헌 (Reference)

      1 J. Kiefer, "Stochastic Estimation of the Maximum of a Regression Function" 23 (23): 462-466, 1952

      2 G. Leonardi, "Road Degradation Survey through Images by Drone" 101 : 222-228, 2019

      3 R. Fan, "Real-Time Dense Stereo Embedded in a UAV for Road Inspection" 2019

      4 K. Chen, "MMDetection: Open MMLab Detection Toolbox and Benchmark"

      5 J. Deng, "ImageNet: A Large-Scale Hierarchical Image Database" Institute of Electrical and Electronics Engineers (IEEE) 248-255, 2009

      6 B. Kim, "Image-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural Network" 26 (26): e2381-, 2019

      7 T. Y. Lin, "Feature Pyramid Networks for Object Detection" 2017 : 936-944, 2017

      8 S. Goessens, "Feasibility Study for Drone-Based Masonry Construction of Real-Scale Structures" 94 : 458-480, 2018

      9 S. Ren, "Faster R-CNN : Towards Real-Time Object Detection with Region Proposal Networks" 39 (39): 1137-1149, 2017

      10 Byunghyun Kim, "Efflorescence assessment using hyperspectral imaging for concrete structures" 국제구조공학회 22 (22): 209-221, 2018

      1 J. Kiefer, "Stochastic Estimation of the Maximum of a Regression Function" 23 (23): 462-466, 1952

      2 G. Leonardi, "Road Degradation Survey through Images by Drone" 101 : 222-228, 2019

      3 R. Fan, "Real-Time Dense Stereo Embedded in a UAV for Road Inspection" 2019

      4 K. Chen, "MMDetection: Open MMLab Detection Toolbox and Benchmark"

      5 J. Deng, "ImageNet: A Large-Scale Hierarchical Image Database" Institute of Electrical and Electronics Engineers (IEEE) 248-255, 2009

      6 B. Kim, "Image-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural Network" 26 (26): e2381-, 2019

      7 T. Y. Lin, "Feature Pyramid Networks for Object Detection" 2017 : 936-944, 2017

      8 S. Goessens, "Feasibility Study for Drone-Based Masonry Construction of Real-Scale Structures" 94 : 458-480, 2018

      9 S. Ren, "Faster R-CNN : Towards Real-Time Object Detection with Region Proposal Networks" 39 (39): 1137-1149, 2017

      10 Byunghyun Kim, "Efflorescence assessment using hyperspectral imaging for concrete structures" 국제구조공학회 22 (22): 209-221, 2018

      11 B. Hariharan, "Discriminative Decorrelation for Clustering and Classification" 7575 (7575): 459-472, 2012

      12 B. Kim, "Development of Automatic Input Negative Sample Algorithm for Improving Crack Detection Deep Learning Model" 23 (23): 125-, 2019

      13 Y. Liu, "Deep Learning-Based Enhancement of Motion Blurred UAV Concrete Crack Images" 34 (34): 04020028-, 2020

      14 H. Kim, "Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing" 17 (17): 2052-, 2017

      15 T. Nishikawa, "Concrete Crack Detection by Multiple Sequential Image Filtering" 27 (27): 29-47, 2012

      16 Z. Cai, "Cascade R-CNN: High Quality Object Detection and Instance Segmentation" 2019

      17 Yufei Liu, "Automated assessment of cracks on concrete surfaces using adaptive digital image processing" 국제구조공학회 14 (14): 719-741, 2014

      18 B. Kim, "Automated Vision-based Detection of Cracks on Concrete Structures Using a Deep Learning Technique" 18 : 3452-, 2018

      19 Y. Li, "Applications of Multirotor Drone Technologies in Construction Management" 19 (19): 401-412, 2019

      20 Agisoft, "Agisoft Metashape"

      21 S. Xie, "Aggregated Residual Transformations for Deep Neural Networks" 2017 : 5987-5995, 2017

      22 E. Ridolfi, "Accuracy Analysis of a Dam Model from Drone Surveys" 17 (17): 1777-, 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-26 학술지명변경 한글명 : 산업안전학회지 -> 한국안전학회지 KCI등재
      2005-02-28 학회명변경 한글명 : 한국산업안전학회 -> 한국안전학회
      영문명 : The Korean Institute Of Industrial Safety -> The Korean Society of Safety
      KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.3 0.3 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.27 0.519 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼