RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      이미지 특징점 가중치 학습을 통한 내비게이션

      한글로보기

      https://www.riss.kr/link?id=A106565253

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Visual navigation is a challenging subject in robotics, which is involved estimating the target position and direction at an arbitrary location. In this study, we follow the snapshot model, a bio-inspired model to determine the target direction with the snapshots taken at the current location and the target location. From the snapshots, we collect landmarks with three different features, the corner landmarks with SURF (Speeded Up Robust Features), the vertical edge landmarks with HOG (Histogram of Gradient) and the Haar-like feature landmarks. Those methods can play significant roles in finding appropriate visual features depending on the environment. A linear combination of those landmarks, that is, weighted feature landmarks are more suitable to find homing vector than landmarks found with one method alone. We propose that the gradient-descent method should be applied to the weighted feature landmarks to improve the homing performance. The homing results with ALV (Average Landmark Vector) model are demonstrated to show the effectiveness of the method.
      번역하기

      Visual navigation is a challenging subject in robotics, which is involved estimating the target position and direction at an arbitrary location. In this study, we follow the snapshot model, a bio-inspired model to determine the target direction with t...

      Visual navigation is a challenging subject in robotics, which is involved estimating the target position and direction at an arbitrary location. In this study, we follow the snapshot model, a bio-inspired model to determine the target direction with the snapshots taken at the current location and the target location. From the snapshots, we collect landmarks with three different features, the corner landmarks with SURF (Speeded Up Robust Features), the vertical edge landmarks with HOG (Histogram of Gradient) and the Haar-like feature landmarks. Those methods can play significant roles in finding appropriate visual features depending on the environment. A linear combination of those landmarks, that is, weighted feature landmarks are more suitable to find homing vector than landmarks found with one method alone. We propose that the gradient-descent method should be applied to the weighted feature landmarks to improve the homing performance. The homing results with ALV (Average Landmark Vector) model are demonstrated to show the effectiveness of the method.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      • Abstract
      • 1. 서론
      • 2. 본론
      • 3. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 정성일, "고속 디지털 시스템 채널의 신호 무결성 성능 분석을 위한 웹기반 서비스 플랫폼" 대한전기학회 69 (69): 99-103, 2020

      2 S. L. Kim, "Wireless Communications in Networked Robotics : Editorial" 16 (16): 4-5, 2009

      3 S. Åkesson, "Visual navigation in desert ants Cataglyphis fortis : are snapshots coupled to a celestial system of reference?" 205 (205): 1971-1978, 2002

      4 C. Lee, "Visual Homing Navigation with Haar-Like Features in the Snapshot" 6 : 33666-33681, 2018

      5 S. Baek, "Snapshot homing navigation based on edge features" 98-107, 2014

      6 H. Bay, "SURF : Speeded up robust features" 404-417, 2006

      7 P. Viola, "Rapid object detection using a boosted cascade of simple features" 1 : 511-518, 2001

      8 D. Kim, "Path integration mechanism with coarse coding of neurons" 34 (34): 277-291, 2011

      9 T. S. Collett, "Path integration in insects" 10 (10): 757-762, 2000

      10 M. Müller, "Path integration in desert ants, Cataglyphis fortis" 85 (85): 5287-5290, 1988

      1 정성일, "고속 디지털 시스템 채널의 신호 무결성 성능 분석을 위한 웹기반 서비스 플랫폼" 대한전기학회 69 (69): 99-103, 2020

      2 S. L. Kim, "Wireless Communications in Networked Robotics : Editorial" 16 (16): 4-5, 2009

      3 S. Åkesson, "Visual navigation in desert ants Cataglyphis fortis : are snapshots coupled to a celestial system of reference?" 205 (205): 1971-1978, 2002

      4 C. Lee, "Visual Homing Navigation with Haar-Like Features in the Snapshot" 6 : 33666-33681, 2018

      5 S. Baek, "Snapshot homing navigation based on edge features" 98-107, 2014

      6 H. Bay, "SURF : Speeded up robust features" 404-417, 2006

      7 P. Viola, "Rapid object detection using a boosted cascade of simple features" 1 : 511-518, 2001

      8 D. Kim, "Path integration mechanism with coarse coding of neurons" 34 (34): 277-291, 2011

      9 T. S. Collett, "Path integration in insects" 10 (10): 757-762, 2000

      10 M. Müller, "Path integration in desert ants, Cataglyphis fortis" 85 (85): 5287-5290, 1988

      11 F. Papi, "Olfactory navigation in birds" 46 : 352-363, 1990

      12 D. Kim, "Neural network mechanism for the orientation behavior of sand scorpions towards prey" 17 (17): 1070-1076, 2006

      13 S. Judd, "Multiple stored views and landmark guidance in ants" 392 : 710-, 1998

      14 S. Baek, "Local visual navigation using features in images" Yonsei University 2015

      15 C. Lee, "Local homing navigation based on the moment model for landmark distribution and features" 17 (17): 2658-, 2017

      16 C. Lee, "Landmark-based homing navigation using omnidirectional depth information" 17 (17): 1928-, 2017

      17 S. Yu, "Landmark vectors with quantized distance information for homing navigation" 19 (19): 121-141, 2011

      18 B. A. Cartwright, "Landmark maps for honeybees" 57 (57): 85-93, 1987

      19 T. S. Collett, "Landmark learning and guidance in insects" 295-303, 1992

      20 K. Weber, "Insect-inspired robotic homing" 7 : 65-97, 1999

      21 T. S. Collett, "Insect navigation en route to the goal : multiple strategies for the use of landmarks" 227-235, 1996

      22 S. Rossel, "How bees analyse the polarization patterns in the sky" 154 (154): 607-615, 1984

      23 N. Dalal, "Histograms of oriented gradients for human detection" IEEE Computer Society 886-893, 2005

      24 C. Lee, "High-Order Moment Models of Landmark Distribution for Local Homing Navigation" 6 : 72137-72152, 2018

      25 D. Kim, "Handling continuous-valued attributes in decision tree with neural network modeling" 211-219, 2000

      26 김만동, "Haar-like Feature의 학습을 이용한 시각 홈 내비게이션" 대한전기학회 68 (68): 1244-1251, 2019

      27 D. G. Lowe, "Distinctive image features from scale-invariant keypoints" 60 (60): 91-110, 2004

      28 J. Rossier, "Auditory cues support place navigation in rats when associated with a visual cue" 117 (117): 209-214, 2000

      29 V. V. Hafner, "Adaptive homing-robotic exploration tours" 9 (9): 131-141, 2001

      30 T. Kimchi, "A subterranean mammal uses the magnetic compass for path integration" 101 (101): 1105-1109, 2004

      31 D. Kim, "A spiking neuron model for synchronous flashing of fireflies" 76 (76): 7-20, 2004

      32 D. Lambrinos, "A mobile robot employing insect strategies for navigation" 30 : 39-64, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼