A<SUP>*</SUP> algorithm is the de facto standard used for a pathfinding search. IDA* is a space-efficient version of A<SUP>*</SUP>, but it suffers from CPU cycles in the search space (the price for using no storage), repeatedly...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A101887822
2015
English
systemized IDA< ; SUP> ; *< ; /SUP> ; algorithm (SIDA< ; SUP> ; *< ; /SUP> ; ) ; A< ; SUP> ; *< ; /SUP> ; IDA< ; SUP> ; *< ; /SUP> ; fringe search algorithm ; on-track strategy ; curvature information
004
KCI등재
학술저널
157-166(10쪽)
1
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
A<SUP>*</SUP> algorithm is the de facto standard used for a pathfinding search. IDA* is a space-efficient version of A<SUP>*</SUP>, but it suffers from CPU cycles in the search space (the price for using no storage), repeatedly...
A<SUP>*</SUP> algorithm is the de facto standard used for a pathfinding search. IDA* is a space-efficient version of A<SUP>*</SUP>, but it suffers from CPU cycles in the search space (the price for using no storage), repeatedly visiting nodes from left to- right traversal of the search tree. To overcome these concerns, recently fringe search algorithm is launched. At some extent, fringe search algorithm performs iterations same as A<SUP>*</SUP> and IDA<SUP>*</SUP>, but still the fringe search algorithm has some drawbacks, visiting nodes that are irrelevant for the current iteration. In this paper, Systemized Iterative Deepening A<SUP>*</SUP> (SIDA<SUP>*</SUP>) introduced to eliminate in-efficiencies such as, search space, visiting irrelevant nodes. It also detects dead ends and reachs the destination node faster than the existing pathfinding algorithms. We considered on-track strategy for accidental obstacles, in addition we include curvature information to avoid off road in static curves. Finally our experiment results performed on grid based pathfinding application between SIDA<SUP>*</SUP> and A<SUP>*</SUP>. We executed on two different platforms with and without obstacles (walls), in both different platforms SIDA<SUP>*</SUP> achieve 15-35% (i.e., time, length, weight, operation) faster than A<SUP>*</SUP> search algorithm. Evaluation results of proposed framework, On-track strategy shows effective for avoiding obstacles on static curves.
참고문헌 (Reference)
1 고정운, "임의의 공간상에서 A-Star 알고리즘을 사용한 AGV 통합 환경 시스템" 한국정보기술학회 11 (11): 227-235, 2013
2 안진호, "우선순위 큐를 이용한 A* 기반 최단경로 탐색 기법" 한국정보기술학회 8 (8): 1-7, 2010
3 C. Hernandez, "Tree Adaptive A*" 123-130, 2011
4 D. Loiacono, "The WCCI 2008 simulated car racing competition" 119-126, 2008
5 Bagchi, Mahanti, "Search algorithms under different kinds of heuristics - a comparative study" 30 (30): 1-21, 1983
6 Martelli, A., "On the complexity of admissible search algorithms" 8 : 1-13, 1977
7 J. Quadflieg, "Learning the track and planning ahead in a car racing controller"
8 Pearl, "Intelligent Search Strategies for Computer Problem Solving" Addison &Wesley 1984
9 Koenig, Sven, "Incremental heuristic search in AI"
10 Koenig, Sven, "Incremental heuristic search in AI" 25 (25): 99-112, 2004
1 고정운, "임의의 공간상에서 A-Star 알고리즘을 사용한 AGV 통합 환경 시스템" 한국정보기술학회 11 (11): 227-235, 2013
2 안진호, "우선순위 큐를 이용한 A* 기반 최단경로 탐색 기법" 한국정보기술학회 8 (8): 1-7, 2010
3 C. Hernandez, "Tree Adaptive A*" 123-130, 2011
4 D. Loiacono, "The WCCI 2008 simulated car racing competition" 119-126, 2008
5 Bagchi, Mahanti, "Search algorithms under different kinds of heuristics - a comparative study" 30 (30): 1-21, 1983
6 Martelli, A., "On the complexity of admissible search algorithms" 8 : 1-13, 1977
7 J. Quadflieg, "Learning the track and planning ahead in a car racing controller"
8 Pearl, "Intelligent Search Strategies for Computer Problem Solving" Addison &Wesley 1984
9 Koenig, Sven, "Incremental heuristic search in AI"
10 Koenig, Sven, "Incremental heuristic search in AI" 25 (25): 99-112, 2004
11 Ghosh, S., "ITS:An efficient limited-memory heuristic tree search algorithm" 1353-1358, 1994
12 Wikipedia, "IDA*"
13 Y. C. Hui, "Game AI: artificial intelligence for 3D path finding" 2 : 2004
14 Wikipedia, "Fringe serach"
15 Björnsson, Yngvi, "Fringe Search: Beating A* at Pathfinding on Game Maps" 2005
16 Reinefeld, A., "Enhanced iterative-deepening search" 16 : 701-710, 1994
17 Russell, S. J., "Efficient memorybounded search methods" Wiley 1-5, 1992
18 Korf, "Depth-first Iterative-Deepening: An Optimal Admissible Tree Search" 27 : 97-109, 1985
19 N. Hansen, "Completely derandomized self adaption in ecolution strategied" 9 : 159-195, 2001
20 Martin V. Butz, "COBOSTAR (On track Strategy )" 2009
21 B. G. Weber, "Building human-level ai for realtime strategy games" AAAI Press 2011
22 F. Safadi, "Artificial intelligence design for real-time strategy games" 2011
23 Suyanto, "Artificial Intelligence: Searching -Reasoning - Planning - Learning (Edisi Revisi)"
24 S. Ontanon, "A survey of real-time strategy game AI research and competition in StarCraft" 293-311, 2013
25 Mohamad EL Falou, "A Decentralized Multiagent Pathfinding Algorithm" 2012
다중 운전모드를 지원하는 메카넘 휠에 의해 구동되는 장애인을 위한 이동체
P(VDF-TrFE) 중합체 박막을 이용한 비휘발성 유기물 강유전체 메모리 박막 트랜지스터
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2022 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2019-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2016-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2012-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2009-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
2008-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | |
2006-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.45 | 0.45 | 0.39 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.38 | 0.35 | 0.566 | 0.16 |