RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      SCCS: Spatiotemporal clustering and compressing schemes for efficient data collection applications in WSNs

      한글로보기

      https://www.riss.kr/link?id=A107577957

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P><P>The development of large‐scale wireless sensor networks engenders many challenging problems. Examples of such problems include how to dynamically organize the sensor nodes into clusters and ...

      <P><B>Abstract</B></P><P>The development of large‐scale wireless sensor networks engenders many challenging problems. Examples of such problems include how to dynamically organize the sensor nodes into clusters and how to compress and route the sensing information to a remote base station. Sensed data in sensor systems reflect the spatial and temporal correlations of physical attributes existing intrinsically in the environment. Noteworthy efficient clustering schemes and data compressing techniques proposed recently leverage the spatiotemporal correlation. These include the framework of Liu <I>et al.</I> and schemes introduced by Gedik <I>et al.</I> However, the previous clustering schemes are based on an impractical assumption of a single‐hop network architecture and their cluster construction communication cost is relatively expensive. On the other hand, the computational overhead of recent compressing techniques (e.g. the work of Liu <I>et al.</I> and Douglas <I>et al.</I>) is quite significant; therefore, it is hard for sensor nodes with limited processing capability to perform these techniques. With such motivation, we propose a novel and one‐round distributed clustering scheme based on spatial correlation between sensor nodes, and propose a novel light‐weight compressing algorithm to effectively save the energy at each transmission from sensors to the base station based on temporal correlation of the sensed data. Besides, the aim of the proposed clustering scheme is not only to group the nodes with the highest similarity in observations into the same cluster, but also to construct and maintain a dynamic backbone for efficient data collection in the networks (with the consideration of sink mobility). Computer simulation shows that the proposed schemes significantly reduce the overall number of communications in the cluster construction phase and the energy consumed in each transmission, while maintaining a low variance between the readings of sensor nodes in the same clusters and high reliability of the compressed data. Copyright © 2010 John Wiley & Sons, Ltd.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼