RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Modification to HL-RF Method for Computation of Structural Reliability Index in Problems with Skew-distributed Variables

      한글로보기

      https://www.riss.kr/link?id=A105480519

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method in reliability analysis is a popular iterative method for obtaining thereliability index. However, in the cases of limit state functions with skew-distributed variables, HL-RF method may giveinappropriate answers. This paper represents a modification to HL-RF method in order to improve its performance in such problems.
      Based on this modification, non-normal distributions are replaced with equivalent skew-normal distributions instead of equivalentnormal distributions. By this modification, asymmetric non-normal distributions are not replaced with symmetric distributionsanymore. It is demonstrated that this consideration of skewness of non-normal distributions improves the behavior of HL-RF methodand makes the proposed method more reliable. This improvement is shown through illustrative examples.
      번역하기

      The Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method in reliability analysis is a popular iterative method for obtaining thereliability index. However, in the cases of limit state functions with skew-distributed variables, HL-RF method may giveinappr...

      The Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method in reliability analysis is a popular iterative method for obtaining thereliability index. However, in the cases of limit state functions with skew-distributed variables, HL-RF method may giveinappropriate answers. This paper represents a modification to HL-RF method in order to improve its performance in such problems.
      Based on this modification, non-normal distributions are replaced with equivalent skew-normal distributions instead of equivalentnormal distributions. By this modification, asymmetric non-normal distributions are not replaced with symmetric distributionsanymore. It is demonstrated that this consideration of skewness of non-normal distributions improves the behavior of HL-RF methodand makes the proposed method more reliable. This improvement is shown through illustrative examples.

      더보기

      참고문헌 (Reference)

      1 Ranganathan, R., "Structural reliability: analysis and design" Jico Publishing House 2000

      2 Rackwitz, R., "Structural reliability under combined random load sequences" 9 (9): 489-494, 1978

      3 Luo, Y., "Structural reliability assessment based on probability and convex set mixed model" 87 (87): 1408-1415, 2009

      4 Ditlevsen, O., "Structural Reliability Methods" Wiley 1996

      5 Rubinstein, R. Y., "Simulation and the Monte Carlo Method" Wiley 1981

      6 Kiureghian, D. A., "Second order reliability approximations" ASCE 113 (113): 1208-1225, 1987

      7 Wang, L. P., "Safety index calculation using intervening variables for structural reliability analysis" 59 (59): 1139-1148, 1996

      8 Rackwitz, R., "Reliability analysis-a review and some perspectives" 23 (23): 365-395, 2001

      9 Liu, P. L., "Optimization algorithms for structural reliability analysis" Department of Civil Engineering, Division of Structural Engineering and Structural Mechanics, University of Calif 1986

      10 Liu, P. L., "Optimization algorithms for structural reliability" 9 (9): 161-177, 1991

      1 Ranganathan, R., "Structural reliability: analysis and design" Jico Publishing House 2000

      2 Rackwitz, R., "Structural reliability under combined random load sequences" 9 (9): 489-494, 1978

      3 Luo, Y., "Structural reliability assessment based on probability and convex set mixed model" 87 (87): 1408-1415, 2009

      4 Ditlevsen, O., "Structural Reliability Methods" Wiley 1996

      5 Rubinstein, R. Y., "Simulation and the Monte Carlo Method" Wiley 1981

      6 Kiureghian, D. A., "Second order reliability approximations" ASCE 113 (113): 1208-1225, 1987

      7 Wang, L. P., "Safety index calculation using intervening variables for structural reliability analysis" 59 (59): 1139-1148, 1996

      8 Rackwitz, R., "Reliability analysis-a review and some perspectives" 23 (23): 365-395, 2001

      9 Liu, P. L., "Optimization algorithms for structural reliability analysis" Department of Civil Engineering, Division of Structural Engineering and Structural Mechanics, University of Calif 1986

      10 Liu, P. L., "Optimization algorithms for structural reliability" 9 (9): 161-177, 1991

      11 Bjerager, P., "On computation methods for structural reliability analysis" 9 (9): 79-96, 1990

      12 Hohenbichler, M., "New light on first- and second-order reliability methods" 4 (4): 267-284, 1987

      13 Mahadevan, S., "Multiple linearization method for nonlinear reliability analysis" 127 (127): 1165-1173, 2001

      14 Shayanfar, M. A., "Locating design point in structural reliability analysis by introduction of a control parameter and moving limited regions" 126 : 196-202, 2017

      15 Azzalini, A., "Further results on a class of distributions which includes the normal ones" 46 (46): 199-208, 1986

      16 Hasofer, A. M., "Exact and invariant secondmoment code format" ASCE 100(EMl) (100(EMl)): 111-121, 1974

      17 Zhao-Hui Lu, "Estimation of load and resistance factors based on the fourth moment method" 국제구조공학회 36 (36): 19-36, 2010

      18 Harbitz, A., "Efficient and accurate probability of failure calculation by use of the importance sampling technique" 825-836, 1983

      19 G.I. Schueller, "Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances" 국제구조공학회 32 (32): 1-20, 2009

      20 Yang, D., "Chaos control for numerical instability of first order reliability method" 15 (15): 3131-3141, 2010

      21 Maes, M. A., "Asymptotic importance sampling" 12 (12): 167-183, 1993

      22 Breitung, K., "Asymptotic approximations for multinormal integrals" ASCE 110 (110): 357-366, 1984

      23 Shayanfar, M. A., "An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method" 47 : 223-237, 2017

      24 Chen, Z., "An adaptive decoupling approach for reliability-based design optimization" 117 : 58-66, 2013

      25 Bucher, C. G., "Adaptive sampling-an iterative fast Monte Carlo procedure" 5 (5): 119-126, 1988

      26 Gong, J. X., "A robust iterative algorithm for structural reliability analysis" 43 (43): 519-527, 2011

      27 Roudak, M. A., "A robust approximation method for nonlinear cases of structural reliability analysis" 133C : 11-20, 2017

      28 Cornell, C. A., "A probability based structural code" 66 (66): 974-985, 1969

      29 Henze, N., "A probabilistic representation of the 'skew-normal' distribution" 13 (13): 271-275, 1986

      30 Roudak, M. A., "A new three-phase algorithm for computation of reliability index and its application in structural mechanics" 2017

      31 Lee, J. O., "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization" 80 (80): 257-269, 2002

      32 Azzalini, A., "A class of distributions which includes the normal ones" 12 (12): 171-178, 1985

      33 Ehsan Jahani, "A New Adaptive Importance Sampling Monte Carlo Method for Structural Reliability" 대한토목학회 17 (17): 210-215, 2013

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-05-27 학술지명변경 한글명 : 대한토목학회 영문논문집 -> KSCE Journal of Civil Engineering KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.59 0.12 0.49
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.42 0.39 0.286 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼