RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Optimization of flatbed trailer frame using the ground beam structure approach

      한글로보기

      https://www.riss.kr/link?id=A107042997

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An alternative lightweight flatbed trailer design is achieved through a multi-stage optimization procedure. Topology optimization is used to obtain the optimal layout of flatbed trailer frame beams that provide minimum compliance when subjected to ben...

      An alternative lightweight flatbed trailer design is achieved through a multi-stage optimization procedure. Topology optimization is used to obtain the optimal layout of flatbed trailer frame beams that provide minimum compliance when subjected to bending loads and exhibits maximum torsional natural frequency. The ground structure approach is used to define the trailer frame layout by generating numerous beams connected to predefined points in the trailer. Topology optimization is formulated as a multi-objective problem subject to a mass constraint. Responses and sensitivities are evaluated using ANSYS, and the optimization problem is solved using the moving asymptotes method. The thicknesses, widths, and heights of the C-channel beams are optimized for further weight reduction while at least maintaining the structural performances of the original design. Size and shape optimizations are performed using OptiStruct. The new optimal design is approximately 13% (275 kg) lighter than and as stiff as the original design for bending loads. However, the former has 3.5 times higher torsional natural frequency than the latter. Moreover, the new optimal design has positive manufacturability because the channel beams will be made out of commercially available sheet metals. The same fabrication technology as for a conventional flatbed trailer is possibly to be used.

      더보기

      참고문헌 (Reference)

      1 M. Bendsøe, "Topology optimization: theory, Methods and Applications" Springer 2003

      2 T. Hagishita, "Topology optimization of trusses by growing ground structure method" 37 : 377-393, 2009

      3 V. Vlasov, "Thin Walled Beams" Jerusalem 1961

      4 D. Carle, "The suitability of aluminium as an alternative material for car bodies" 20 : 267-272, 1999

      5 K. Svanberg, "The method of moving asymptotes-a new method for structural optimization" 24 : 359-373, 1987

      6 Y. Zhang, "Study on structural lightweight design of automotive front side rail based on response surface method" 129 : 553-557, 2007

      7 S. Das, "Primary magnesium production costs for automotive applications" 60 : 63-69, 2008

      8 J. H. Park, "Optimal design of rear chassis components for lightweight automobile using design of experiment" 41 : 391-396, 2010

      9 Altair Engineering, "OptiStruct User's Guide"

      10 Denghong Xiao, "Novel steel wheel design based on multi-objective topology optimization" 대한기계학회 28 (28): 1007-1016, 2014

      1 M. Bendsøe, "Topology optimization: theory, Methods and Applications" Springer 2003

      2 T. Hagishita, "Topology optimization of trusses by growing ground structure method" 37 : 377-393, 2009

      3 V. Vlasov, "Thin Walled Beams" Jerusalem 1961

      4 D. Carle, "The suitability of aluminium as an alternative material for car bodies" 20 : 267-272, 1999

      5 K. Svanberg, "The method of moving asymptotes-a new method for structural optimization" 24 : 359-373, 1987

      6 Y. Zhang, "Study on structural lightweight design of automotive front side rail based on response surface method" 129 : 553-557, 2007

      7 S. Das, "Primary magnesium production costs for automotive applications" 60 : 63-69, 2008

      8 J. H. Park, "Optimal design of rear chassis components for lightweight automobile using design of experiment" 41 : 391-396, 2010

      9 Altair Engineering, "OptiStruct User's Guide"

      10 Denghong Xiao, "Novel steel wheel design based on multi-objective topology optimization" 대한기계학회 28 (28): 1007-1016, 2014

      11 C. H. Chuang, "Multidisciplinary design optimization on vehicle tailor rolled blank design" 35 : 551-560, 2008

      12 F. Pan, "Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression" 88 : 36-44, 2010

      13 N. L. Pedersen, "Maximization of eigenvalues using topology optimization" 20 : 2-11, 2000

      14 A. Lou, "Magnesium: Current and potential automotive applications" 54 : 42-48, 2002

      15 T. S. Kim, "Mac-based mode-tracking in structural topology optimization" 74 : 375-383, 2000

      16 G. W. Jang, "Lightweight flatbed trailer design by using topology and thickness optimization" 41 : 295-307, 2010

      17 "Korea Trailer Co., Ltd"

      18 S. I. Lee, "Integrated process for structural-topological configuration design of weight-reduced vehicle components" 43 : 620-629, 2007

      19 J. Li, "Implementation of CAE simulation platform for lightweight automobile body design" 260-263, 2010

      20 X. Huang, "Evolutionary topological optimization of vibrating continuum structures for natural frequencies" 88 : 357-364, 2010

      21 X. Cui, "Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration" 32 : 815-821, 2011

      22 R. Stewart, "Automotive composites offer lighter solutions" 54 : 22-28, 2010

      23 R. Sullivan, "Automotive carbon fiber: Opportunities and challenges" 58 : 77-79, 2006

      24 A. Kelkar, "Automobile bodies: Can aluminum be an economical alternative to steel?" 53 : 28-32, 2001

      25 M. Zhou, "An integrated approach to topology, sizing, and shape optimization" 26 : 308-317, 2004

      26 I. N. Fridlyander, "Aluminum alloys : Promising materials in the automotive industry" 44 : 365-370, 2002

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼