RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Transformation of static balancer from truss to linkage

      한글로보기

      https://www.riss.kr/link?id=A107042991

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a transformation method by which a static balancer of a truss is transformed into static balancers of various mechanisms. For conventional design methods the kinematics and potential energy of every mechanism should be computed to design a static balancer. For the proposed design method, however, no computation of kinematics and potential energy is necessary to obtain static balancers of various mechanisms, once a static balancer of a truss has been designed. The concepts of the Baranov truss and associated linkage are adopted to determine transformation relations. Conversion rules are developed in the viewpoint of gravitational torques and deletion rules are determined to apply conversion rules to the design equation. Static balancers of various mechanisms (four-bar linkage, slider crank mechanism, Watt mechanism and sliding mechanism derived from the watt mechanism) are derived from those of the fivelink and seven-link Baranov trusses in this paper. Simulations results showed that complete gravity compensation is achieved for all derived mechanisms from Baranov trusses.
      번역하기

      This paper presents a transformation method by which a static balancer of a truss is transformed into static balancers of various mechanisms. For conventional design methods the kinematics and potential energy of every mechanism should be computed to ...

      This paper presents a transformation method by which a static balancer of a truss is transformed into static balancers of various mechanisms. For conventional design methods the kinematics and potential energy of every mechanism should be computed to design a static balancer. For the proposed design method, however, no computation of kinematics and potential energy is necessary to obtain static balancers of various mechanisms, once a static balancer of a truss has been designed. The concepts of the Baranov truss and associated linkage are adopted to determine transformation relations. Conversion rules are developed in the viewpoint of gravitational torques and deletion rules are determined to apply conversion rules to the design equation. Static balancers of various mechanisms (four-bar linkage, slider crank mechanism, Watt mechanism and sliding mechanism derived from the watt mechanism) are derived from those of the fivelink and seven-link Baranov trusses in this paper. Simulations results showed that complete gravity compensation is achieved for all derived mechanisms from Baranov trusses.

      더보기

      참고문헌 (Reference)

      1 D. A. Streit, "‘Perfect’ Spring Equilibrators for Rotatable Bodies" 111 (111): 451-458, 1989

      2 K. A. Wyrobek, "Towards a personal robotics development platform:Rationale and design of an intrinsically safe personal robot" 2165-2170, 2008

      3 A. Russo, "Static balancing of parallel robots" 40 (40): 191-202, 2005

      4 Taoran Liu, "Static balancing of a spatial six-degree-of-freedom decoupling parallel mechanism" 대한기계학회 28 (28): 191-199, 2014

      5 C. H. Cho, "Static balancer for the neck of a face robot" 228 (228): 561-568, 2014

      6 R. Barents, "Spring-to-spring Balancing as Energy-free Adjustment Method in Gravity Equilibrators" 133 : 1-10, 2011

      7 G. J. Walsh, "Spatial spring equilibrator theory" 26 (26): 155-170, 1991

      8 N. Ulrich, "Passive mechanical gravity compensation for robot manipulators" 1536-1541, 1991

      9 C. M. Gosselin, "On the design of gravitycompensated six-degree-of-freedom parallel mechanisms" 2287-2294, 1998

      10 B. van Ninhuijs, "Multi-degree-of-freedom spherical permanent magnet gravity compensator for mobile arm support systems" 1443-1449, 2013

      1 D. A. Streit, "‘Perfect’ Spring Equilibrators for Rotatable Bodies" 111 (111): 451-458, 1989

      2 K. A. Wyrobek, "Towards a personal robotics development platform:Rationale and design of an intrinsically safe personal robot" 2165-2170, 2008

      3 A. Russo, "Static balancing of parallel robots" 40 (40): 191-202, 2005

      4 Taoran Liu, "Static balancing of a spatial six-degree-of-freedom decoupling parallel mechanism" 대한기계학회 28 (28): 191-199, 2014

      5 C. H. Cho, "Static balancer for the neck of a face robot" 228 (228): 561-568, 2014

      6 R. Barents, "Spring-to-spring Balancing as Energy-free Adjustment Method in Gravity Equilibrators" 133 : 1-10, 2011

      7 G. J. Walsh, "Spatial spring equilibrator theory" 26 (26): 155-170, 1991

      8 N. Ulrich, "Passive mechanical gravity compensation for robot manipulators" 1536-1541, 1991

      9 C. M. Gosselin, "On the design of gravitycompensated six-degree-of-freedom parallel mechanisms" 2287-2294, 1998

      10 B. van Ninhuijs, "Multi-degree-of-freedom spherical permanent magnet gravity compensator for mobile arm support systems" 1443-1449, 2013

      11 H. S. Kim, "Multi-DOF counterbalance mechanism for a service robot arm, mechatronics" 19 (19): 1756-1763, 2014

      12 S. K. Agrawal, "Gravity-balancing of spatial robotic manipulators" 39 (39): 1331-1344, 2004

      13 S. Hirose, "Float arm V: hyperredundant manipulator with wire-driven weight-compensation mechanism" 368-373, 2003

      14 R. Kram, "Effect of reduced gravity on the preferred walk-run transition speed" 200 (200): 821-826, 1997

      15 A. Agrawal, "Design of gravity balancing leg orthosis using non-zero free length springs" 40 (40): 693-709, 2005

      16 G. Endo, "A passive weight compensation mechanism with a noncircular pulley and a spring" 2010

      17 M. Frey, "A novel mechatronic body weight support system" 14 (14): 311-321, 2006

      18 Morita, "A novel mechanism design for gravity compensation in three dimensional space, in Advanced Intelligent Mechatronics" 163-168, 2003

      19 R. M. Nathan, "A constant force generation mechanism" 107 (107): 508-512, 1985

      20 K. Koser, "A cam mechanism for gravity-balancing" 36 (36): 523-530, 2009

      21 조창현, "A 2-dof gravity compensator with bevel gears" 대한기계학회 26 (26): 2913-2919, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼