We investigate the dynamical properties of a Holling type I predator-prey model, which harvests both prey and predator and stock predator impulsively. By using the Floquet theory and small amplitude perturbation method we prove that there exists a sta...
We investigate the dynamical properties of a Holling type I predator-prey model, which harvests both prey and predator and stock predator impulsively. By using the Floquet theory and small amplitude perturbation method we prove that there exists a stable prey-extermination solution when the impulsive period is less than some critical value, which implies that the model could be extinct under some conditions. Moreover, we give a sufficient condition for the permanence of the model.