RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Location Recognition of Indoor Firefighting Facilities based on RGB -D C amera and 3D L iDAR

      한글로보기

      https://www.riss.kr/link?id=A108461444

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, as fires frequently occur in large buildings, digital twin (DT) technology that enables remote and real-time monitoring and control similar to the real world environment is being studied as a disaster response technology in buildings. In ord...

      Recently, as fires frequently occur in large buildings, digital twin (DT) technology that enables remote and real-time monitoring and control similar to the real world environment is being studied as a disaster response technology in buildings. In order to use DT technology, it is essential to collect the spatial data of actual building indoor environments and firefighting facilities. This study proposes an indoor spatial data collecting system that can generate the modeling data inside the building and location data of firefighting facilities using laser imaging detection and ranging (LiDAR) and RGB-D cameras. First, point clouds from three-dimensional (3D) LiDAR and the FAST-LIO2 (Fast LiDAR-Inertial Odometry) algorithm are used to obtain odometry information in an indoor environment. The firefighting facilities located inside the building are detected using RGB images and the deep learning model Faster region-based convolutional neural network (R-CNN) with Inception V2 architecture trained using RGB images of four types of firefighting facilities: fire extinguishers, fire hydrants, exit signs, and fire detectors. When a firefighting facility is detected, the relative distance between the RGB-D camera and the firefighting facility is calculated through the depth image and intrinsic parameters of the RGB-D camera. Afterwards, odometry information obtained from FAST-LIO2 and the relative distance are combined to obtain the 3D location of the firefighting facility. Point clouds of the FAST-LIO2 algorithm are then converted into models of the building indoor environment. Through this method, spatial data of an actual building can be constructed and used with DT technology.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Methodology
      • 3. Experiment
      • 4. Results
      • 5. Conclusion
      • 1. Introduction
      • 2. Methodology
      • 3. Experiment
      • 4. Results
      • 5. Conclusion
      • Author Contributions
      • Conflicts of Interest
      • Acknowledgments
      • References
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼