<P>In this paper, we show a second-order (four-resonator) absorptive bandstop filter circuit topology which gives a larger bandwidth compared to a first-order topology. Due to the absorptive characteristic, it creates a large attenuation at the ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107514807
2015
-
SCOPUS,SCIE
학술저널
691-698(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>In this paper, we show a second-order (four-resonator) absorptive bandstop filter circuit topology which gives a larger bandwidth compared to a first-order topology. Due to the absorptive characteristic, it creates a large attenuation at the ...
<P>In this paper, we show a second-order (four-resonator) absorptive bandstop filter circuit topology which gives a larger bandwidth compared to a first-order topology. Due to the absorptive characteristic, it creates a large attenuation at the center frequency using low-Q resonators. Since low-Q resonators can be used in generating a large attenuation, small-size resonators can be employed in bandstop filter design. Analytic design equations are provided so that a higher-order absorptive bandstop filter can be designed analytically. It is also shown that the second-order filter topology exhibits a better frequency selectivity having a same bandwidth. The proposed filter topology has been applied to a design of a miniaturized low-temperature co-fired ceramic bandstop filter with low-Q resonators. The Q-factor of the lumped-element resonators has been chosen to be 5 for demonstration.</P>