RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      The complex life of rhomboid pseudoproteases

      한글로보기

      https://www.riss.kr/link?id=O112923117

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        1742-464X

      • Online ISSN

        1742-4658

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        4261-4283   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Rhomboid proteases are serine proteases that cleave their substrates within transmembrane helices. Surprisingly, the metazoan rhomboid‐like family is dominated by the presence of rhomboid homologs that lack the residues essential for proteolytic catalysis found in their rhomboid protease counterparts. In spite of lacking proteolytic activity, these rhomboid pseudoproteases have emerged during the last decade to play critical roles in cell signaling, innate immunity, and protein quality control. Here, Adrain and Cavadas discuss the pathophysiological roles and mechanism of action of rhomboid pseudoproteases.
      Rhomboid pseudoproteases are catalytically inactive members of the rhomboid superfamily. The founding members, rhomboids, were first identified in Drosophila as serine intramembrane proteases that cleave transmembrane proteins, enabling signaling. This led to the discovery of the wider rhomboid superfamily, a clan that in metazoans is dominated by pseudoproteases. These so‐called rhomboid pseudoproteases inherited from their catalytically active ancestors a conserved rhomboid‐like domain and a propensity to regulate signaling. Lacking catalytic activity, they developed new ‘pseudoenzyme’ functions that include regulating the trafficking, turnover, and activity of their client proteins. Rhomboid pseudoproteases have preeminent roles in orchestrating immune cell activation, antiviral responses, and cytokine release in response to microbial infection, or in chronic diseases, and have also been implicated in growth factor signaling, cancer, and, more recently, metabolism. Here, we discuss the mechanism(s) of action of rhomboid pseudoproteases, contrasted with rhomboid proteases. We also highlight the roles of rhomboid pseudoproteases in mammalian physiology, which, quite paradoxically among pseudoenzymes, is understood much better than active rhomboids.
      번역하기

      Rhomboid proteases are serine proteases that cleave their substrates within transmembrane helices. Surprisingly, the metazoan rhomboid‐like family is dominated by the presence of rhomboid homologs that lack the residues essential for proteolytic cat...

      Rhomboid proteases are serine proteases that cleave their substrates within transmembrane helices. Surprisingly, the metazoan rhomboid‐like family is dominated by the presence of rhomboid homologs that lack the residues essential for proteolytic catalysis found in their rhomboid protease counterparts. In spite of lacking proteolytic activity, these rhomboid pseudoproteases have emerged during the last decade to play critical roles in cell signaling, innate immunity, and protein quality control. Here, Adrain and Cavadas discuss the pathophysiological roles and mechanism of action of rhomboid pseudoproteases.
      Rhomboid pseudoproteases are catalytically inactive members of the rhomboid superfamily. The founding members, rhomboids, were first identified in Drosophila as serine intramembrane proteases that cleave transmembrane proteins, enabling signaling. This led to the discovery of the wider rhomboid superfamily, a clan that in metazoans is dominated by pseudoproteases. These so‐called rhomboid pseudoproteases inherited from their catalytically active ancestors a conserved rhomboid‐like domain and a propensity to regulate signaling. Lacking catalytic activity, they developed new ‘pseudoenzyme’ functions that include regulating the trafficking, turnover, and activity of their client proteins. Rhomboid pseudoproteases have preeminent roles in orchestrating immune cell activation, antiviral responses, and cytokine release in response to microbial infection, or in chronic diseases, and have also been implicated in growth factor signaling, cancer, and, more recently, metabolism. Here, we discuss the mechanism(s) of action of rhomboid pseudoproteases, contrasted with rhomboid proteases. We also highlight the roles of rhomboid pseudoproteases in mammalian physiology, which, quite paradoxically among pseudoenzymes, is understood much better than active rhomboids.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼