RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Robust centralized and weighted measurement fusion white noise deconvolution estimators for multisensor systems with mixed uncertainties

      한글로보기

      https://www.riss.kr/link?id=O120335316

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Estimating the input signal of a system is called deconvolution or input estimation. The white noise deconvolution has important applications in oil seismic exploration, communications, and signal processing. This paper addresses the design of robust ...

      Estimating the input signal of a system is called deconvolution or input estimation. The white noise deconvolution has important applications in oil seismic exploration, communications, and signal processing. This paper addresses the design of robust centralized fusion (CF) and weighted measurement fusion (WMF) white noise deconvolution estimators for a class of uncertain multisensor systems with mixed uncertainties, including uncertain‐variance multiplicative noises in measurement matrix, missing measurements, and uncertain‐variance linearly correlated measurement and process white noises. By introducing the fictitious noise, the considered system is converted into one with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case system with the conservative upper bounds of uncertain noise variances, the robust CF and WMF time‐varying white noise deconvolution estimators (predictor, filter, and smoother) are presented in a unified framework. Applying the Lyapunov equation approach, their robustness is proved in the sense that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. Using the information filter, their equivalence is proved. Their accuracy relations are proved. The computational complexities are analyzed and compared. Compared with the CF algorithm, the WMF algorithms can significantly reduce the computational burden when the number of sensors is larger. The corresponding robust fused steady‐state white noise deconvolution estimators are also presented. A simulation example with respect to the multisensor IS‐136 communication systems shows the effectiveness and correctness of the proposed results.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼