RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Functional analysis of metallothionein MTT5 from Tetrahymena thermophila

      한글로보기

      https://www.riss.kr/link?id=O119368498

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        0730-2312

      • Online ISSN

        1097-4644

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        3257-3266   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Metallothioneins (MTs) constitute a superfamily of cysteine‐rich proteins that bind heavy‐metal ions by metal‐thiolate clusters. Five MT genes from Tetrahymena thermophila was subdivided into 7a (MTT1, MTT3, and MTT5) and 7b (MTT2 and MTT4) subfamilies. In the study, MTT5 was knocked out in Tetrahymena. The mutant cells were sensitive to Cd2+ and Pb2+ but poorly sensitive to Cu+. In the MTT5 knockout cells, the expression levels of MTT1 and MTT3 were significantly up‐regulated under Cd2+ and Pb2+ stresses, whereas the expression levels of MTT2 and MTT4 were significantly up‐regulated under Cu+ stress relative to those in the wild‐type cells. Furthermore, recombinant GST‐MTT5 was expressed in Escherichia coli/pGEX‐MTT5 and purified by affinity chromatography. Fluorescence quenching analysis showed that apoMTT5 can bind 8 Cd2+, 8 Pb2+, and 12 Cu+. The metal‐binding ability of the MTT5 complex followed the order of Pb2+ > Cd2+ > Cu+. Meanwhile, the half‐maximal inhibitory concentrations of the heavy‐metal ions for E. coli/pGEX‐MTT5 were as follows: Cu+ (483.9 µM) > Pb2+ (410.7 µM) > Cd2+ (130.8 µM). The accumulation of Cd2+, Pb2+, and Cu+ in the E. coli/pGEX‐MTT5 was enhanced relative to that of E. coli/pGEX‐4T. Results suggested that different MTs functionally compensated in Tetrahymena, and MTT5 was a potential candidate for cadmium and lead bioremediation.
      MTT5 knockout Tetrahymena mutant cells were sensitive to Cd2+ and Pb2+ but poorly sensitive to Cu+; different MTs functionally compensated in Tetrahymena; MTT5 was a potential candidate for cadmium and lead bioremediation.
      번역하기

      Metallothioneins (MTs) constitute a superfamily of cysteine‐rich proteins that bind heavy‐metal ions by metal‐thiolate clusters. Five MT genes from Tetrahymena thermophila was subdivided into 7a (MTT1, MTT3, and MTT5) and 7b (MTT2 and MTT4) subf...

      Metallothioneins (MTs) constitute a superfamily of cysteine‐rich proteins that bind heavy‐metal ions by metal‐thiolate clusters. Five MT genes from Tetrahymena thermophila was subdivided into 7a (MTT1, MTT3, and MTT5) and 7b (MTT2 and MTT4) subfamilies. In the study, MTT5 was knocked out in Tetrahymena. The mutant cells were sensitive to Cd2+ and Pb2+ but poorly sensitive to Cu+. In the MTT5 knockout cells, the expression levels of MTT1 and MTT3 were significantly up‐regulated under Cd2+ and Pb2+ stresses, whereas the expression levels of MTT2 and MTT4 were significantly up‐regulated under Cu+ stress relative to those in the wild‐type cells. Furthermore, recombinant GST‐MTT5 was expressed in Escherichia coli/pGEX‐MTT5 and purified by affinity chromatography. Fluorescence quenching analysis showed that apoMTT5 can bind 8 Cd2+, 8 Pb2+, and 12 Cu+. The metal‐binding ability of the MTT5 complex followed the order of Pb2+ > Cd2+ > Cu+. Meanwhile, the half‐maximal inhibitory concentrations of the heavy‐metal ions for E. coli/pGEX‐MTT5 were as follows: Cu+ (483.9 µM) > Pb2+ (410.7 µM) > Cd2+ (130.8 µM). The accumulation of Cd2+, Pb2+, and Cu+ in the E. coli/pGEX‐MTT5 was enhanced relative to that of E. coli/pGEX‐4T. Results suggested that different MTs functionally compensated in Tetrahymena, and MTT5 was a potential candidate for cadmium and lead bioremediation.
      MTT5 knockout Tetrahymena mutant cells were sensitive to Cd2+ and Pb2+ but poorly sensitive to Cu+; different MTs functionally compensated in Tetrahymena; MTT5 was a potential candidate for cadmium and lead bioremediation.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼