RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Mineralogy and chemical aspects of some ophiolitic metaultramafics, central Eastern Desert, Egypt: Evidences from chromites, sulphides and gangues

      한글로보기

      https://www.riss.kr/link?id=O120845134

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Chromites and sulphides are the most common ore minerals in the ophiolitic metasomatized ultramafics (~790 Ma) of Um Halham, Fawakhir and Barramiya, central Eastern Desert, Egypt. These ultramafics exhibit variable degrees of alteration and metasomat...

      Chromites and sulphides are the most common ore minerals in the ophiolitic metasomatized ultramafics (~790 Ma) of Um Halham, Fawakhir and Barramiya, central Eastern Desert, Egypt. These ultramafics exhibit variable degrees of alteration and metasomatism and include massive serpentinites (serpentinized peridotite and serpentinite), tremolite‐talc rocks, talc‐carbonate rocks, listwaenite‐like rocks and typical listwaenite.
      The alteration of chromite to Cr‐magnetite was accompanied by the formation of chloritic aureoles due to the release of Al and Mg from chromite. Textural and compositional features of the chromites suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is facial with the host ultramafics. The chromites exhibit a boninitic affinity and a forearc suprasubduction setting of the present ophiolite assemblages. The variability of chromite chemistry indicates a melt‐rock reaction, together with the water‐bearing melt which is necessary for crystallizing chromite. Pentlandite, pyrrhotite, arsenopyrite, gersdorffite and pyrite are the most common sulphide minerals. Gold occurs either as an invisible phase associated with gersdorffite, arsenopyrite, and As‐rich pyrite or as native nuggets in listwaenites of Barramiya area. Gangue metasomatized phases associated with these ore minerals are identified as sericite, carbonate and chlorite. The investigated sericite ranges in composition from mariposite (>0.5% Cr) to fuchsite (>1% Cr), which indicates typical listwaenites. Five varieties of carbonate minerals are identified; magnesite, breunnerite, dolomite, calcite and ankerite.
      The CO2‐rich fluids are released during progressive decarbonation reactions in carbonate‐bearing metasediments, whereas Ni and As‐rich fluids are attributed to nearby granitic intrusions affected on serpentinites and leached Ni and precious metals like gold forming As‐Ni‐rich fluids. These metasomatic fluids are thought to reflect a range of melts derived from a compositionally evolving source during subduction initiation in a forearc environment.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼