A graph G is called a fractional (g, f, n)-critical graph if any n vertices are removed from G, then the resulting graph admits a fractional (g, f)-factor. In this paper, we determine the new toughness condition for fractional (g, f, n)-critical graph...
A graph G is called a fractional (g, f, n)-critical graph if any n vertices are removed from G, then the resulting graph admits a fractional (g, f)-factor. In this paper, we determine the new toughness condition for fractional (g, f, n)-critical graphs. It is proved that G is fractional (g, f, n)-critical if $t(G){\geq}\frac{b^2-1+bn}{a}$. This bound is sharp in some sense. Furthermore, the best toughness condition for fractional (a, b, n)-critical graphs is given.