RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability

      한글로보기

      https://www.riss.kr/link?id=O107829169

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost‐effective impact‐resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one‐dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra‐stretchability, high rate‐dependent strength, superior impact‐resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co‐existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster‐based materials.
      Unique physical interaction facilitated by 1D topologies of molecular cluster‐integrated polymers is applied for the design of impact‐resistant materials with exceptional energy dissipation capability and strong rate‐dependent mechanical strengths, enabling the simultaneous achievement of promising impact resistance and processability/recoverability.
      번역하기

      The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost‐effective impact‐resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integ...

      The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost‐effective impact‐resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one‐dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra‐stretchability, high rate‐dependent strength, superior impact‐resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co‐existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster‐based materials.
      Unique physical interaction facilitated by 1D topologies of molecular cluster‐integrated polymers is applied for the design of impact‐resistant materials with exceptional energy dissipation capability and strong rate‐dependent mechanical strengths, enabling the simultaneous achievement of promising impact resistance and processability/recoverability.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼