RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Enhancing Robotic Tactile Perception through Biomimetic Approaches : From Neuron Modeling to Spiking Neural Networks

      한글로보기

      https://www.riss.kr/link?id=T17068942

      • 저자
      • 발행사항

        울산 : Ulsan National Institute of Science and Technology, 2024

      • 학위논문사항
      • 발행연도

        2024

      • 작성언어

        영어

      • 발행국(도시)

        울산

      • 형태사항

        91 ; 26 cm

      • 일반주기명

        지도교수: Kim, Sung-Phil

      • UCI식별코드

        I804:31001-200000813563

      • 소장기관
        • 울산과학기술원 소장기관정보
      • ※ 해당 논문은 저작자의 요청에 따라 [원문보기]가 제공되지 않습니다.
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • List of Figures Ⅳ
      • List of Tables Ⅵ
      • Nomenclature Ⅶ
      • Chapter 1 General Introduction 1
      • 1.1 Background 2
      • List of Figures Ⅳ
      • List of Tables Ⅵ
      • Nomenclature Ⅶ
      • Chapter 1 General Introduction 1
      • 1.1 Background 2
      • 1.1.1 Motivation 2
      • 1.1.2 Introduction to biomimetic approaches in tactile sensing 3
      • 1.1.3 Introduction to Spiking Neural Network 3
      • 1.2 Objective and specific aims of each chapter 5
      • Chapter 2 Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model 7
      • 2.1 Introduction 8
      • 2.2 Materials and methods 10
      • 2.2.1 Overview of animal experiments 10
      • 2.2.2 Animals and surgical procedure 10
      • 2.2.3 Setup for spike data acquisition 10
      • 2.2.4 Ex-vivo single fiber recordings 10
      • 2.2.5 Identification of single A-fibers 11
      • 2.2.6 Mechanical stimulator 11
      • 2.2.7 Modeling SA-I firings using interspike intervals 12
      • 2.2.8 Izhikevich biological neuron model 12
      • 2.2.9 Long-term adapting Izhikevich model 15
      • 2.2.10 Evaluating the similarity between model and biological spike trains 16
      • 2.3 Results 17
      • 2.3.1 Firing patterns of SA-I afferent 17
      • 2.3.2 Simulation of the vanilla Izhikevich model 20
      • 2.3.3 Simulation of the vanilla Izhikevich model 20
      • 2.3.4 Simulating the dynamics of long-term spike frequency adaptation in SA-I neurons .. 22
      • 2.3.5 Optimization of parameters for long-term spike frequency adaptation Izhikevich neuron model 24
      • 2.3.6 Performance of the long-term spike frequency adaptation Izhikevich. 25
      • 2.4 Discussion 27
      • Chapter 3 Biomimetic Spiking Neural Network Model for Multi-dimensional Tactile Perception 29
      • 3.1 Introduction 30
      • 3.2 Materials and methods 33
      • 3.2.1 Multi-layered SNN architecture 33
      • 3.2.2 First layer: SA-1 and RA-1 afferent neurons 33
      • 3.2.3 Second layer: cuneate nucleus simulation 34
      • 3.2.4 Third layer: emulation of the S1 cortex 36
      • 3.2.5 Biological neuron models implementation 37
      • 3.2.6 Experiment design and tactile stimuli 40
      • 3.3 Results 44
      • 3.3.1 Spike responses through layers 44
      • 3.3.2 Role of SA and RA in static and dynamic stimulation 46
      • 3.3.3 One-dimension tactile stimulus information processing 47
      • 3.3.4 Multi-dimension tactile stimulus information processing 51
      • 3.4 Discussion 54
      • Chapter 4 Advancing Robotic Tactile Perception: Adaptive Tactile Perception 56
      • 4.1 Introduction 57
      • 4.2 Materials and methods 60
      • 4.2.1 Experimental setup for tactile robotic system 60
      • 4.2.2 Experimental setup for tactile stimuli 61
      • 4.2.3 Tactile data acquisition 63
      • 4.2.4 Data preparation and classifier training 64
      • 4.2.5 Adaptive Tactile Perception and Decision-Making System 65
      • 4.3 Results 68
      • 4.3.1 Object Classification Accuracy for Single Actions 68
      • 4.3.2 Object Classification Accuracy for Multiple Actions 71
      • 4.3.3 Evaluation of Adaptive Decision-Making Strategy 73
      • 4.4 Discussion 75
      • Chapter 5 Concluding remarks 77
      • 5.1 Main findings 78
      • 5.1.1 Transformation of tactile stimuli into human-like spike patterns: Potential of biomimetic approaches 79
      • 5.1.2 Processing tactile information using spiking neural networks: Suitability for real-time applications 80
      • 5.1.3 Adaptive strategy selection for object recognition: Enhancing classification accuracy with prior tactile knowledge 81
      • 5.1.4 Contributions of current dissertation 82
      • 5.2 Limitations 83
      • 5.3 Implications 84
      • REFERENCES 85
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼