RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      전고체 전지용 황화물계 고체전해질의 ZnO의 도핑 효과에 관한 전기화학적 성능 연구

      한글로보기

      https://www.riss.kr/link?id=T16661075

      • 저자
      • 발행사항

        울산 : 울산대학교 대학원, 2023

      • 학위논문사항

        학위논문(석사) -- 울산대학교 대학원 , 화학과 , 2023. 2

      • 발행연도

        2023

      • 작성언어

        영어

      • 주제어
      • 발행국(도시)

        울산

      • 기타서명

        Electrochemical performance study on the doping effects of ZnO on sulfide solid electrolytes for all solid state batteries

      • 형태사항

        131p.: 삽화; 30 cm

      • 일반주기명

        울산대학교 논문은 저작권에 의해 보호받습니다.
        지도교수: 류광선
        참고문헌: p. 128-130

      • UCI식별코드

        I804:48009-200000668114

      • 소장기관
        • 울산대학교 도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      All-solid-state batteries remain problems to be overcome due to the high-temperature heat-treatment process, and the compatibility problem with Li metal as an anode. In this work, glass-ceramic Li7P2S8I (LPSI) and argyrodite Li6PS5Cl (LPSCl) solid electrolyte with high ionic conductivity is prepared using a high-energy dry ball milling process with a low-temperature (200 °C) and high temperature (550°C) heat-treatment process. Then, ZnO are doped with LPSI and LPSCl solid electrolyte, particularly Zn at the Li site and O at the S site, by our optimized synthesis process. The ZnO co-doping is confirmed by powder X-ray diffraction (XRD), Laser–Raman, field emission scanning electron microscopy (FE-SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy analysis. The ionic conductivity value of the prepared solid electrolytes is measured by electrochemical impedance spectroscopy analysis, and the prepared LPSI and Li6.9Zn0.05P2S7.95O0.05I solid electrolytes exhibit an ionic conductivity of (4.4 and 4.2) mS·cm−1, respectively, at room temperature. The prepared Li6PS5Cl and Li5.95Zn0.025PS4.975O0.025Cl solid electrolytes exhibited ionic conductivities of 4.55 and 4.08 mS·cm−1, respectively at 30°C. To evaluate the electrochemical stability of the prepared solid electrolyte, we perform cyclic voltammetry and galvanostatic discharge/charge voltage profiles analysis. In addition, the fabricated all-solid-state battery exhibits a high specific capacity of 165 mAh·g−1 (0.1 C), and a high-capacity retention rate of 95.2 % for LPSI-0.05ZnO. And the initial discharge capacity of the assembled all-solid-state battery showed a specific capacity of 149 mAh g-1 (0.1 C) and a high capacity retention rate of 99.7 % for LPSCl-0.025ZnO. Interestingly, ZnO co-doped LPSI and LPSCl solid electrolyte exhibits longer air-stability than the undoped LPSI and LPSCl solid electrolyte in dry air with 10 % humidity.
      번역하기

      All-solid-state batteries remain problems to be overcome due to the high-temperature heat-treatment process, and the compatibility problem with Li metal as an anode. In this work, glass-ceramic Li7P2S8I (LPSI) and argyrodite Li6PS5Cl (LPSCl) solid ele...

      All-solid-state batteries remain problems to be overcome due to the high-temperature heat-treatment process, and the compatibility problem with Li metal as an anode. In this work, glass-ceramic Li7P2S8I (LPSI) and argyrodite Li6PS5Cl (LPSCl) solid electrolyte with high ionic conductivity is prepared using a high-energy dry ball milling process with a low-temperature (200 °C) and high temperature (550°C) heat-treatment process. Then, ZnO are doped with LPSI and LPSCl solid electrolyte, particularly Zn at the Li site and O at the S site, by our optimized synthesis process. The ZnO co-doping is confirmed by powder X-ray diffraction (XRD), Laser–Raman, field emission scanning electron microscopy (FE-SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy analysis. The ionic conductivity value of the prepared solid electrolytes is measured by electrochemical impedance spectroscopy analysis, and the prepared LPSI and Li6.9Zn0.05P2S7.95O0.05I solid electrolytes exhibit an ionic conductivity of (4.4 and 4.2) mS·cm−1, respectively, at room temperature. The prepared Li6PS5Cl and Li5.95Zn0.025PS4.975O0.025Cl solid electrolytes exhibited ionic conductivities of 4.55 and 4.08 mS·cm−1, respectively at 30°C. To evaluate the electrochemical stability of the prepared solid electrolyte, we perform cyclic voltammetry and galvanostatic discharge/charge voltage profiles analysis. In addition, the fabricated all-solid-state battery exhibits a high specific capacity of 165 mAh·g−1 (0.1 C), and a high-capacity retention rate of 95.2 % for LPSI-0.05ZnO. And the initial discharge capacity of the assembled all-solid-state battery showed a specific capacity of 149 mAh g-1 (0.1 C) and a high capacity retention rate of 99.7 % for LPSCl-0.025ZnO. Interestingly, ZnO co-doped LPSI and LPSCl solid electrolyte exhibits longer air-stability than the undoped LPSI and LPSCl solid electrolyte in dry air with 10 % humidity.

      더보기

      목차 (Table of Contents)

      • Acknowledgement …………………………………………………………………………4
      • Abstract …………………………………………………………………………………….5
      • List of tables ……………………………………………………………………….……….9
      • List of figures ……………………………………………………………………………...10
      • Acknowledgement …………………………………………………………………………4
      • Abstract …………………………………………………………………………………….5
      • List of tables ……………………………………………………………………….……….9
      • List of figures ……………………………………………………………………………...10
      • Chapter 1. Introduction
      • 1-1. Lithium-ion secondary batteries ……………………………………………………...14
      • 1-1-1. Composition of lithium-ion batteries ………………………………….……….17
      • 1-1-2. Principle of lithium-ion batteries ……………………………………...……….17
      • 1-2. All-solid-state lithium-ion batteries ………………………………………………….24
      • 1-2-1. Inorganic/ceramic solid electrolyte ……………………………………………24
      • 1-2-2. Properties of inorganic/ceramic solid electrolyte ……………………………...24
      • 1-2-3. Li+ diffusion mechanism of inorganic/ceramic solid electrolyte ………………25
      • 1-3. Inorganic solid electrolyte ……………………………………………………………26
      • 1-3-1. Oxide solid electrolyte …………………………………………………………26
      • 1-3-1-1. NASICON ………………………………………………………...……..26
      • 1-3-1-2. Perovskite ………………………………………………………...……...29
      • 1-3-1-3. LISICON ………………………………………………………...………31
      • 1-3-1-4. Garnet ………………………………………………………...………….31
      • 1-3-2. Sulfide solid electrolyte ………………………………………………………..34
      • 1-3-2-1. Thio-LISICON ………………………………………………………......34
      • 1-3-2-2. Li2S-P2S5 …………………………………………………………….......37
      • 1-3-2-3. Argyrodite ………………………………………………………………..37
      • 1-4. Purpose …………………………………………………………………………….38
      • References ………………………………………………………………………………...39
      • Chapter 2. General experimental
      • 2-1. Physical characterization ……………………………………………………………..44
      • 2-1-1. X-ray diffraction (XRD) ………………………………………………...…......44
      • 2-1-2. Field emission scanning electron microscopy (FE-SEM) and Energy dispersive
      • X-Ray spectroscopy (EDS) …………………………………………...………...48
      • 2-1-3. Laser-Raman spectroscopy ……………………………………………….........48
      • 2-1-4. Solid-state Nuclear Magnetic Resonance (NMR) ………………………………49
      • 2-2. Electrochemical analysis ……………………………………………………………..52
      • 2-2-1. Electrochemical impedance spectroscopy (EIS) …………………………….. ..52
      • 2-2-2. Cyclic voltammetry (CV) ……………………………………………………...55
      • 2-2-3. Direct current cycling (DC-cycling) …………………………………………...55
      • 2-2-4. Galvanostatic charge-discharge measurements (CD) ……………………….…55
      • 2-2-5. Air stability …………………………………………………………….………56
      • References………………………………………………………………………….……...57
      • Chapter 3. Synthesis and electrochemical performance of glass-ceramic Li7-2xP2S8-xOxI (0 ≤ x ≤ 0.2) solid electrolyte for all-solid-state lithium batteries
      • 3-1. Introduction …………………………………………………………………………..58
      • 3-2. Experimental …………………………………………………………………………60
      • 3-2-1. Preparation of Li7-2xP2S8-xOxI solid electrolyte ……..………………………….60
      • 3-2-2. Characterization and electrochemical measurements ……..…………………...61
      • 3-3. Results and discussion ……………………………………………………………….62
      • 3-3-1. Structural analysis ……………………………......…………………………….62
      • 3-3-2. Electrochemical performance ………………………………………………….77
      • 3-3-3. Air stability ……………………………......…………………………………...90
      • 3-4. Conclusion…………………………………………………………………………....95
      • References………………………………………………………………………………....96
      • Chapter 4. Synthesis and electrochemical performance of Argyrodite type Li6-2xZnxPS5-xOxCl (0 ≤ x ≤ 0.1) solid electrolyte for all-solid-state lithium batteries
      • 4-1. Introduction …………………………………………………………………………99
      • 4-2. Experimental ………………………………………………………………………..101
      • 4-2-1. Preparation of Li6-2xZnxPS5-xOxCl solid electrolyte …………………………..101
      • 4-2-2. Characterization and electrochemical measurements ……..………………….101
      • 4-3. Results and discussion ………………………………………………………...........103
      • 4-3-1. Structural analysis ……………………………......…………………………...103
      • 4-3-2. Electrochemical performance ………………………………………………...113
      • 4-3-3. Air stability ………………………………………………………………...…123
      • 4-4. Conclusion…………………………………………………………………………..127
      • References………………………………………………………………………………..128
      • Chapter 5. Summary ………………………………………………………………131
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼