RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE KCI등재

      The Influence of Fixation Rigidity on Intervertebral Joints - An Experimental Comparison between a Rigid and a Flexible System

      한글로보기

      https://www.riss.kr/link?id=A100666562

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.
      번역하기

      Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of int...

      Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼