RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Signal Transformed Internal Model Control for Non-raster Scanning of Piezo-actuated Nanopositioning Stages

      한글로보기

      https://www.riss.kr/link?id=A106963612

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a new signal transformed internal model control (STIMC) scheme for non-raster scanning patterns of piezo-actuated nanopositioning stages. To smooth the scanning signals superimposed with a ramp or time-varying amplitudes, a signal ...

      This paper proposes a new signal transformed internal model control (STIMC) scheme for non-raster scanning patterns of piezo-actuated nanopositioning stages. To smooth the scanning signals superimposed with a ramp or time-varying amplitudes, a signal transformation operator is calculated to convert the references into standard harmonic waveforms. An inverse transformation operator is then added in the control loop to generate the driving signals. For the contained internal model control (IMC) design, an H∞ mixed-sensitivity method is utilized for the first order internal mode synthesis. A second and a third internal modes are included in the IMC for alleviating residual high-frequency errors resulted from the nonlinearity of hysteresis. To verify the proposed STIMC scheme, comparative experiments with conventional IMC are conducted based on a nanopositioning platform. Results prove that the STIMC is effective on non-raster signals’ tracking. A same tracking precision for Lissajous scanning can be obtained by STIMC compared with IMC. An improvement of larger than 50% and 80% of root-mean-square errors can be obtained for cycloid and spiral scanning patterns, respectively.

      더보기

      참고문헌 (Reference)

      1 Y. K. Yong, "Videorate Lissajous-scan atomic force microscopy" 13 (13): 85-93, 2014

      2 A. Bazaei, "Tracking of constant-linear-velocity spiral trajectories by approximate internal model control" 27-30, 2017

      3 T. Tuma, "The four pillars of nanopositioning for scanning probe microscopy : The position sensor, the scanning device, the feedback controller, and the reference trajectory" 33 (33): 68-85, 2013

      4 Z. Wu, "Survey on recent designs of compliant micro-/nano-positioning stages" 7 (7): 5-, 2018

      5 N. Nikooienejad, "Sequential cycloid scanning for time-resolved atomic force microscopy" 125-130, 2018

      6 M. Hammouche, "Robust and optimal output-feedback control for interval statespace model : application to a two-degrees-of-freedom piezoelectric tube actuator" 141 (141): 021008-, 2018

      7 Q. Xu, "Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control" 14 (14): 238-248, 2017

      8 L. L. Li, "Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages" 47 : 97-104, 2017

      9 D. Habineza, "Multivariable compensation of hysteresis, creep, badly damped vibration, and cross couplings in multiaxes piezoelectric actuators" 15 (15): 1639-1653, 2018

      10 M. Rakotondrabe, "Multivariable classical Prandtl–Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator" 89 (89): 481-499, 2017

      1 Y. K. Yong, "Videorate Lissajous-scan atomic force microscopy" 13 (13): 85-93, 2014

      2 A. Bazaei, "Tracking of constant-linear-velocity spiral trajectories by approximate internal model control" 27-30, 2017

      3 T. Tuma, "The four pillars of nanopositioning for scanning probe microscopy : The position sensor, the scanning device, the feedback controller, and the reference trajectory" 33 (33): 68-85, 2013

      4 Z. Wu, "Survey on recent designs of compliant micro-/nano-positioning stages" 7 (7): 5-, 2018

      5 N. Nikooienejad, "Sequential cycloid scanning for time-resolved atomic force microscopy" 125-130, 2018

      6 M. Hammouche, "Robust and optimal output-feedback control for interval statespace model : application to a two-degrees-of-freedom piezoelectric tube actuator" 141 (141): 021008-, 2018

      7 Q. Xu, "Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control" 14 (14): 238-248, 2017

      8 L. L. Li, "Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages" 47 : 97-104, 2017

      9 D. Habineza, "Multivariable compensation of hysteresis, creep, badly damped vibration, and cross couplings in multiaxes piezoelectric actuators" 15 (15): 1639-1653, 2018

      10 M. Rakotondrabe, "Multivariable classical Prandtl–Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator" 89 (89): 481-499, 2017

      11 J. Ling, "Model reference adaptive damping control for a nanopositioning stage with load uncertainties" 90 (90): 045101-, 2019

      12 Min Ming, "Model Prediction Control Design for Inverse Multiplicative Structure Based Feedforward Hysteresis Compensation of a Piezo Nanopositioning Stage" 한국정밀공학회 19 (19): 1699-1708, 2018

      13 A. Alipour, "Internal model control of cycloid trajectory for video-rate AFM imaging with a SOI-MEMS nanopositioner" 2916-2921, 2018

      14 A. Bazaei, "Internal model control for spiral trajectory tracking With MEMS AFM scanners" 24 (24): 1717-1728, 2016

      15 Z. Feng, "Integrated modified repetitive control with disturbance observer of piezoelectric nanopositioning stages for high-speed and precision motion" 141 (141): 081006-, 2019

      16 M. S. Rana, "Improvement in the imaging performance of atomic force microscopy : a survey" 14 (14): 1265-1285, 2017

      17 A. Bazaei, "Highspeed Lissajous-scan atomic force microscopy : Scan pattern planning and control design issues" 83 (83): 063701-, 2012

      18 Z. Feng, "Highbandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner" 88 (88): 085107-, 2017

      19 J. C. Doyle, "Feedback Control Theory" Courier Corporation 31-32, 2013

      20 K. K. Leang, "Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner" 17 (17): 356-369, 2012

      21 Y. F. Shan, "Design and control for highspeed nanopositioning : serial-kinematic nanopositioners and repetitive control for nanofabrication" 33 (33): 86-105, 2013

      22 C. X. Li, "Damping control of piezo-actuated nanopositioning stages with recursive delayed position feedback" 22 (22): 855-864, 2017

      23 A. A. Eielsen, "Damping and tracking control schemes for nanopositioning" 19 (19): 432-444, 2014

      24 Jie Ling, "Damping Controller Design for Nanopositioners: A Hybrid Reference Model Matching and Virtual Reference Feedback Tuning Approach" 한국정밀공학회 19 (19): 13-22, 2018

      25 A. Bazaei, "Combining spiral scanning and internal model control for sequential AFM imaging at video rate" 22 (22): 371-380, 2016

      26 I. A. Mahmood, "A new scanning method for fast atomic force microscopy" 10 (10): 203-216, 2011

      27 Y. R. Teo, "A comparison of scanning methods and the vertical control implications for scanning probe microscopy" 19 (19): 1352-1366, 2018

      28 Jie Ling, "A Robust Resonant Controller for High-Speed Scanning of Nanopositioners: Design and Implementation" Institute of Electrical and Electronics Engineers (IEEE) 28 (28): 1116-1123, 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼