RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Point-Wise Fusion of Distributed Gaussian Process Experts (FuDGE) Using a Fully Decentralized Robot Team Operating in Communication-Devoid Environment

      한글로보기

      https://www.riss.kr/link?id=A107453016

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>In this paper, we focus on large-scale environment monitoring by utilizing a fully decentralized team of mobile robots. The robots utilize the resource constrained-decentralized active sensing scheme to select the most informative (uncertain)...

      <P>In this paper, we focus on large-scale environment monitoring by utilizing a fully decentralized team of mobile robots. The robots utilize the resource constrained-decentralized active sensing scheme to select the most informative (uncertain) locations to observe while conserving allocated resources (battery, travel distance, <I>etc.</I>). We utilize a distributed Gaussian process (GP) framework to split the computational load over our fleet of robots. Since each robot is individually generating a model of the environment, there may be conflicting predictions for test locations. Thus, in this paper, we propose an algorithm for aggregating individual prediction models into a single globally consistent model that can be used to infer the overall spatial dynamics of the environment. To make a prediction at a previously unobserved location, we propose a novel gating network for a mixture-of-experts model wherein the weight of an expert is determined by the responsibility of the expert over the unvisited location. The benefit of posing our problem as a centralized fusion with a distributed GP computation approach is that the robots never communicate with each other, individually optimize their own GP models based on their respective observations, and off-load all their learnt models on the base station only at the end of their respective mission times. We demonstrate the effectiveness of our approach using publicly available datasets.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼