RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Effect of defect location on the swimming speed of a microscopic artificial swimmer: A numerical study

      한글로보기

      https://www.riss.kr/link?id=A103790929

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The main objective of this work is to explore the effect of defect location on the swimming speed of a microscopic artificial swimmer. The swimmer consists of an artificial filament composed of super-paramagnetic beads connected by elastic linkers and...

      The main objective of this work is to explore the effect of defect location on the swimming speed of a microscopic artificial swimmer.
      The swimmer consists of an artificial filament composed of super-paramagnetic beads connected by elastic linkers and is modeled with aworm-like-chain configuration. To simulate the swimming motion of the filament, a load particle is attached at one end of the filament.
      The Rotne-Prager approximation is used to evaluate the hydrodynamic interactions between the filament and the fluid. To validate thenumerical code, we first simulated the swimming motion of the filament without defect (‘without defect’ means the bending stiffness ofthe filament is uniform along its length). Next, we simulated the swimming motion of defective filament by setting zero for the bendingstiffness value at a particular bead location. We observed that when the location of defect is on the load side of the filament, the swimmingvelocity is less than that of the defect-less filament, and vice versa. The effect of defect is more significant when it is located on theload side of the filament (The difference between the swimming velocity of defective and defect-less filament amounts to 38%) thanwhen it is on the free end side (The difference is only 7% ). We also observed that at a certain sperm number the swimming direction isreversed when the defect is located very close to the load particle.

      더보기

      참고문헌 (Reference)

      1 E. Lauga, "The hydrodynamics of swimming microorganisms" 72 : 096601-, 2009

      2 M. Roper, "On the dynamics of magnetically driven elastic filaments" 554 : 167-190, 2006

      3 E. Gauger, "Numerical study of a microscopic artificial swimmer" 74 : 021907-, 2006

      4 S. Alapati, "Numerical simulation of the electrophoretic transport of a biopolymer through a synthetic nano-pore," 37 : 466-477, 2011

      5 S. Alapati, "Numerical and theoretical study on the mechanism of biopolymer translocation process through a nano-pore" 135 : 055103-, 2011

      6 R. Dreyfus, "Microscopic artificial swimmers" 437 : 862-865, 2005

      7 E. M. Purcell, "Life at low Reynolds number" 45 : 3-11, 1977

      8 G. T. Yates, "How microorganisms move through water" 74 : 358-365, 1986

      9 C. Brennen, "Fluid mechanics of propulsion by cilia and flagella" 9 : 339-398, 1977

      10 L. J. Fauci, "Biofluidmechanics of reproduction" 38 : 371-394, 2006

      1 E. Lauga, "The hydrodynamics of swimming microorganisms" 72 : 096601-, 2009

      2 M. Roper, "On the dynamics of magnetically driven elastic filaments" 554 : 167-190, 2006

      3 E. Gauger, "Numerical study of a microscopic artificial swimmer" 74 : 021907-, 2006

      4 S. Alapati, "Numerical simulation of the electrophoretic transport of a biopolymer through a synthetic nano-pore," 37 : 466-477, 2011

      5 S. Alapati, "Numerical and theoretical study on the mechanism of biopolymer translocation process through a nano-pore" 135 : 055103-, 2011

      6 R. Dreyfus, "Microscopic artificial swimmers" 437 : 862-865, 2005

      7 E. M. Purcell, "Life at low Reynolds number" 45 : 3-11, 1977

      8 G. T. Yates, "How microorganisms move through water" 74 : 358-365, 1986

      9 C. Brennen, "Fluid mechanics of propulsion by cilia and flagella" 9 : 339-398, 1977

      10 L. J. Fauci, "Biofluidmechanics of reproduction" 38 : 371-394, 2006

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼