RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      The Effect of Heat Input on the Defect Phases in High Frequency Electric Resistance Welding

      한글로보기

      https://www.riss.kr/link?id=A104265244

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The effect of the chemical compositions of base material and ERW conditions on defect formation is studied by an analysis of defect formation mechanism and defect phases in variation to heat input and apex angle. In the high heat input range, a comet ...

      The effect of the chemical compositions of base material and ERW conditions on defect formation is studied
      by an analysis of defect formation mechanism and defect phases in variation to heat input and apex angle.
      In the high heat input range, a comet shape narrow gap is formed due to higher current density and higher
      Lorentz force at the welding point than at the apex point. The comet shape narrow gap, which has a wider
      width at the welding point, causes a penetrator rate increase by leading the retardation of sweeping speed
      of molten metal bridge that discharges the oxides from the narrow gap. The increase of apex angle is very
      effective in minimize the penetrator defect rate with the optimization of heat input. The oxides in cold weld
      at low heat input range have an FeO phase, and the oxides in penetrator at high heat input range have an
      Fe3O4 phase. The reason for the Fe3O4 phase in the penetrators is that the molten metal can be oxidized
      first on the strip edges, and then the oxidation increase after being discharged from the narrow gap and
      are refilled into the narrow gap due to the retardation of sweeping speed. Therefore, penetrators have Fe3O4-
      MnO2 rather than FeO-MnO-SiO2 phases as proposed in previous articles. Mn amount contained in the base
      material gives a more effective role to the penetrator defect rate than to the Mn/Si ratio.

      더보기

      다국어 초록 (Multilingual Abstract)

      The effect of the chemical compositions of base material and ERW conditions on defect formation is studied by an analysis of defect formation mechanism and defect phases in variation to heat input and apex angle. In the high heat input range, a come...

      The effect of the chemical compositions of base material and ERW conditions on defect formation is studied
      by an analysis of defect formation mechanism and defect phases in variation to heat input and apex angle.
      In the high heat input range, a comet shape narrow gap is formed due to higher current density and higher
      Lorentz force at the welding point than at the apex point. The comet shape narrow gap, which has a wider
      width at the welding point, causes a penetrator rate increase by leading the retardation of sweeping speed
      of molten metal bridge that discharges the oxides from the narrow gap. The increase of apex angle is very
      effective in minimize the penetrator defect rate with the optimization of heat input. The oxides in cold weld
      at low heat input range have an FeO phase, and the oxides in penetrator at high heat input range have an
      Fe3O4 phase. The reason for the Fe3O4 phase in the penetrators is that the molten metal can be oxidized
      first on the strip edges, and then the oxidation increase after being discharged from the narrow gap and
      are refilled into the narrow gap due to the retardation of sweeping speed. Therefore, penetrators have Fe3O4-
      MnO2 rather than FeO-MnO-SiO2 phases as proposed in previous articles. Mn amount contained in the base
      material gives a more effective role to the penetrator defect rate than to the Mn/Si ratio.

      더보기

      참고문헌 (Reference)

      1 N. Watanabe, 26 : 453-, 1986

      2 T. Kyogoku, 35 : 61-, 1987

      3 H. Haga, 59 : 208s-, 1980

      4 M. Saito, 26 : 461-, 1986

      5 J. H. Choi, 1-8, 1999

      6 J. H. Choi, 85 : 27s-, 2004

      7 C. M. Kim, 209 : 838-, 2009

      8 H. Haga, 60 : 104s-, 1981

      1 N. Watanabe, 26 : 453-, 1986

      2 T. Kyogoku, 35 : 61-, 1987

      3 H. Haga, 59 : 208s-, 1980

      4 M. Saito, 26 : 461-, 1986

      5 J. H. Choi, 1-8, 1999

      6 J. H. Choi, 85 : 27s-, 2004

      7 C. M. Kim, 209 : 838-, 2009

      8 H. Haga, 60 : 104s-, 1981

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.05 0.91 1.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.03 0.86 0.678 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼