RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      재3차원 공간 내의 평면 객체와 비선형 칼만필터를 이용한 카메라 자세 추정 기법

      한글로보기

      https://www.riss.kr/link?id=A109474978

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we describe a method for estimating camera pose using the feature points present on a 2D planar object which is located in the world coordinate system. One of the most conventional approaches for estimating camera pose using a planar objects is to employ the 2D homography between the planar object and the image plane. In this paper, we proposes a camera pose estimation method using the Unscented Kalman Filter(UKF). The proposed method provides more robust camera pose estimation compared to the homography-only approach and minimizes issues such as error accumulation that can occur when using the homography alone. In addition, it provides improved camera tracking performance by detecting new feature points reliably even when the reference features for the camera pose initialization move completely out of the camera's field of view. The effectiveness of the proposed method is examined through several experiments and results.
      번역하기

      In this paper, we describe a method for estimating camera pose using the feature points present on a 2D planar object which is located in the world coordinate system. One of the most conventional approaches for estimating camera pose using a planar ob...

      In this paper, we describe a method for estimating camera pose using the feature points present on a 2D planar object which is located in the world coordinate system. One of the most conventional approaches for estimating camera pose using a planar objects is to employ the 2D homography between the planar object and the image plane. In this paper, we proposes a camera pose estimation method using the Unscented Kalman Filter(UKF). The proposed method provides more robust camera pose estimation compared to the homography-only approach and minimizes issues such as error accumulation that can occur when using the homography alone. In addition, it provides improved camera tracking performance by detecting new feature points reliably even when the reference features for the camera pose initialization move completely out of the camera's field of view. The effectiveness of the proposed method is examined through several experiments and results.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼