RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Walking improves your cognitive map in environments that are large-scale and large in extent

      한글로보기

      https://www.riss.kr/link?id=A107750238

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>This study investigated the effect of body-based information (proprioception, etc.) when participants navigated large-scale virtual marketplaces that were either small (Experiment 1) or large in extent (Experiment 2). Extent refers to the siz...

      <P>This study investigated the effect of body-based information (proprioception, etc.) when participants navigated large-scale virtual marketplaces that were either small (Experiment 1) or large in extent (Experiment 2). Extent refers to the size of an environment, whereas scale refers to whether people have to travel through an environment to see the detail necessary for navigation. Each participant was provided with full body-based information (walking through the virtual marketplaces in a large tracking hall or on an omnidirectional treadmill), just the translational component of body-based information (walking on a linear treadmill, but turning with a joystick), just the rotational component (physically turning but using a joystick to translate) or no body-based information (joysticks to translate and rotate). In large and small environments translational body-based information significantly improved the accuracy of participants' cognitive maps, measured using estimates of direction and relative straight line distance but, on its own, rotational body-based information had no effect. In environments of small extent, full body-based information also improved participants' navigational performance. The experiments show that locomotion devices such as linear treadmills would bring substantial benefits to virtual environment applications where large spaces are navigated, and theories of human navigation need to reconsider the contribution made by body-based information, and distinguish between environmental scale and extent.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼