RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Biomaterial-Based Tissue Engineering for Tooth-Supportive Complex Regeneration

      한글로보기

      https://www.riss.kr/link?id=A102073666

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      조직공학은 질병이나 사고등으로 인해 손상된 조직을 대체하는 인공 보철물 개발에서 자기 조직으로의 재생과 성장을 통해, 본래의 생리학적 기능 회복을 이끄는 재생의학으로 발전해왔다. 줄기세포등을 주입하여 재생을 이끄는 기술을 비롯해, 다양한 단백질과 성장인자들을 전달하여 손상 조직이나 장기를 복원하는 기술들이 개발되면서 조직공학 및 재생의학은 새로운 패러다임을 만들어가고 있다. 특히, 치아를 지지하는 치주조직의 재생은 수백 마이크론단위의 공간내에 특정 방향성을 지닌 섬유결합조직이 골조직과 융합하여 치아를 단단히 지지하는 복합구조를 지니고 있어, 기존의 재생술식으로는 한계가 있다. 이를 극복하고 백악질-치주인대-골조직으로 구성된 치주복합조직의 재생을 유도하기위해, 천연 및 합성 생체고분자재료를 기반으로한 다양한 의공학적 접근법들이 최근 소개되고 있다. 본고에서는 생체재료가 지니는 생물학적 특성을 기반한 치주조직재생유도 구조체 개발의 최신 연구개발 현황 및 전망을 기술하였다.
      번역하기

      조직공학은 질병이나 사고등으로 인해 손상된 조직을 대체하는 인공 보철물 개발에서 자기 조직으로의 재생과 성장을 통해, 본래의 생리학적 기능 회복을 이끄는 재생의학으로 발전해왔다....

      조직공학은 질병이나 사고등으로 인해 손상된 조직을 대체하는 인공 보철물 개발에서 자기 조직으로의 재생과 성장을 통해, 본래의 생리학적 기능 회복을 이끄는 재생의학으로 발전해왔다. 줄기세포등을 주입하여 재생을 이끄는 기술을 비롯해, 다양한 단백질과 성장인자들을 전달하여 손상 조직이나 장기를 복원하는 기술들이 개발되면서 조직공학 및 재생의학은 새로운 패러다임을 만들어가고 있다. 특히, 치아를 지지하는 치주조직의 재생은 수백 마이크론단위의 공간내에 특정 방향성을 지닌 섬유결합조직이 골조직과 융합하여 치아를 단단히 지지하는 복합구조를 지니고 있어, 기존의 재생술식으로는 한계가 있다. 이를 극복하고 백악질-치주인대-골조직으로 구성된 치주복합조직의 재생을 유도하기위해, 천연 및 합성 생체고분자재료를 기반으로한 다양한 의공학적 접근법들이 최근 소개되고 있다. 본고에서는 생체재료가 지니는 생물학적 특성을 기반한 치주조직재생유도 구조체 개발의 최신 연구개발 현황 및 전망을 기술하였다.

      더보기

      참고문헌 (Reference)

      1 Iwata T, "Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use" 37 : 1088-1099, 2010

      2 Albuquerque MT, "Tissue-engineering-based strategies for regenerative endodontics" 93 (93): 1222-1231, 2014

      3 Park CH, "Tissue engineering bone-ligament complexes using fiber-guiding scaffolds" 33 : 137-145, 2012

      4 Bartold PM, "Tissue engineered periodontal products" 51 : 1-15, 2016

      5 Obregon F, "Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering" 94 : 143S-152S, 2015

      6 Dan H, "The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets" 35 : 113-122, 2014

      7 Wei G, "The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres" 28 : 2087-2096, 2007

      8 Lutolf MP, "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering" 23 : 47-55, 2005

      9 Handelsman M, "Surgical guidelines for dental implant placement" 201 : 139-152, 2006

      10 Wei G, "Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering" 25 : 4749-4757, 2004

      1 Iwata T, "Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use" 37 : 1088-1099, 2010

      2 Albuquerque MT, "Tissue-engineering-based strategies for regenerative endodontics" 93 (93): 1222-1231, 2014

      3 Park CH, "Tissue engineering bone-ligament complexes using fiber-guiding scaffolds" 33 : 137-145, 2012

      4 Bartold PM, "Tissue engineered periodontal products" 51 : 1-15, 2016

      5 Obregon F, "Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering" 94 : 143S-152S, 2015

      6 Dan H, "The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets" 35 : 113-122, 2014

      7 Wei G, "The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres" 28 : 2087-2096, 2007

      8 Lutolf MP, "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering" 23 : 47-55, 2005

      9 Handelsman M, "Surgical guidelines for dental implant placement" 201 : 139-152, 2006

      10 Wei G, "Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering" 25 : 4749-4757, 2004

      11 Vo TN, "Strategies for controlled delivery of growth factors and cells for bone regeneration" 64 : 1292-1309, 2012

      12 Horst OV, "Stem cell and biomaterials research in dental tissue engineering and regeneration" 56 : 495-520, 2012

      13 Kang YH, "Stability of simultaneously placed dental implants with autologous bone grafts harvested from the iliac crest or intraoral jaw bone" 15 : 172-, 2015

      14 Park CH, "Spatiotemporally controlled microchannels of periodontal mimic scaffolds" 93 : 1304-1312, 2014

      15 Ma PX, "Scaffolds for tissue fabrication" 7 : 30-40, 2004

      16 Chan BP, "Scaffolding in tissue engineering: general approaches and tissue-specific considerations" 17 (17): 467-479, 2008

      17 Messenger MP, "Regenerative medicine : a snapshot of the current regulatory environment and standards" 23 : H10-H17, 2011

      18 Isidor F, "Regeneration of alveolar bone following surgical and non-surgical periodontal treatment" 12 : 687-696, 1985

      19 Liu X, "Polymeric scaffolds for bone tissue engineering" 32 : 477-486, 2004

      20 Beachley V, "Polymer nanofibrous structures:Fabrication, biofunctionalization, and cell interactions" 35 : 868-892, 2010

      21 Iwata T, "Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model" 30 : 2716-2723, 2009

      22 Wang HL, "Periodontal regeneration" 76 : 1601-1622, 2005

      23 Wei G, "Partially nanofibrous architecture of 3D tissue engineering scaffolds" 30 : 6426-6434, 2009

      24 Chen FM, "New insights into and novel applications of release technology for periodontal reconstructive therapies" 149 : 92-110, 2011

      25 Wei G, "Nanostructured Biomaterials for Regeneration" 18 : 3566-3582, 2008

      26 Jin Q, "Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo" 3 : e1729-, 2008

      27 Chen VJ, "Nano-fibrous poly(L-lactic acid)scaffolds with interconnected spherical macropores" 25 : 2065-2073, 2004

      28 Ivanovski S, "Multiphasic scaffolds for periodontal tissue engineering" 93 : 1212-1221, 2014

      29 Catledge SA, "Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials" l4 : 986-989, 2004

      30 Moioli EK, "Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering" 59 : 308-324, 2007

      31 Spalazzi JP, "In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration" 86 : 1-12, 2008

      32 Park CH, "Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces" 20 : 533-542, 2014

      33 De Coster P, "Healing of extraction sockets filled with BoneCeramic(R)prior to implant placement : preliminary histological findings" 13 : 34-45, 2011

      34 Kaigler D, "Growth factor delivery for oral and periodontal tissue engineering" 3 : 647-662, 2006

      35 Liu X, "Functionalized synthetic biodegradable polymer scaffolds for tissue engineering" 12 : 911-919, 2012

      36 Shahrjerdi A, "Fabrication of functionally graded hydroxyapatitetitanium by applying optimal sintering procedure and powder metallurgy" 6 : 2258-2267, 2011

      37 Somerman MJ, "Evolution of periodontal regeneration : from the roots’point of view" 34 : 420-424, 1999

      38 Jin Q, "Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors" 9 (9): 519-526, 2004

      39 Song W, "Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers : a biomimetic extracellular matrix for osteoblastic cells" 23 : 115101-, 2012

      40 Vaquette C, "Effect of culture conditions and calcium phosphate coating on ectopic bone formation" 34 : 5538-5551, 2013

      41 Zhu J, "Design properties of hydrogel tissue-engineering scaffolds" 8 : 607-626, 2011

      42 Kamaly N, "Degradable Controlled-Release Polymers and Polymeric Nanoparticles : Mechanisms of Controlling Drug Release" 116 : 2602-2663, 2016

      43 Taba M, Jr, "Current concepts in periodontal bioengineering" 8 : 292-302, 2005

      44 Mao JJ, "Craniofacial tissue engineering by stem cells" 85 : 966-979, 2006

      45 Tsumanuma Y, "Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model" 32 : 5819-5825, 2011

      46 S. Schek RM, "Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering" 27 : 1160-1166, 2006

      47 Singh P, "Clinical evaluation of GEM 21S((R))and a collagen membrane with a coronally advanced flap as a root coverage procedure in the treatment of gingival recession defects : A comparative study" 16 : 577-583, 2012

      48 Moffat KL, "Characterization of the structure-function relationship at the ligament-to-bone interface" 105 : 7947-7952, 2008

      49 Ishikawa I, "Cell sheet engineering and other novel cell-based approaches to periodontal regeneration" 51 : 220-238, 2009

      50 Iwata T, "Cell sheet engineering and its application for periodontal regeneration" 9 : 343-356, 2015

      51 Holzwarth JM, "Biomimetic nanofibrous scaffolds for bone tissue engineering" 32 : 9622-9629, 2011

      52 Liu X, "Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering" 30 : 2252-2258, 2009

      53 Ma PX, "Biomimetic materials for tissue engineering" 60 : 184-198, 2008

      54 S. Park CH, "Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces" 31 : 5945-5952, 2010

      55 Wang X, "Biomimetic electrospun nanofibrous structures for tissue engineering" 16 : 229-241, 2013

      56 Sharma S, "Biomaterials in tooth tissue engineering : a review" 8 : 309-315, 2014

      57 Qi C, "Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine" 6 : 638-653, 2015

      58 Polimeni G, "Biology and principles of periodontal wound healing/regeneration" 41 : 30-47, 2006

      59 Washio K, "Assessment of cell sheets derived from human periodontal ligament cells : a pre-clinical study" 341 : 397-404, 2010

      60 Park CH, "Advanced Engineering Strategies for Periodontal Complex Regeneration" 9 : 57-, 2016

      61 Vaquette C, "A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex" 33 : 5560-5573, 2012

      62 Rasperini G, "3D-printed Bioresorbable Scaffold for Periodontal Repair" 94 : 153S-157S, 2015

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-11-11 학회명변경 한글명 : 대한치과기재학회 -> 대한치과재료학회
      영문명 : The Korea Research Society For Dental Materials -> Korean Society For Dental Materials
      KCI등재
      2014-11-11 학술지명변경 한글명 : 대한치과기재학회지 -> 대한치과재료학회지
      외국어명 : J. Korea Res. Soc. Dent. Mater. -> Korean Journal of Dental Materials
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.33 0.33 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.408 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼