RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE 국가R&D연구논문

      Head-to-Head Linked Dialkylbifuran-Based Polymer Semiconductors for High-Performance Organic Thin-Film Transistors with Tunable Charge Carrier Polarity

      한글로보기

      https://www.riss.kr/link?id=A107524774

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>A planar backbone conformation is essential for enabling polymer semiconductors with high charge carrier mobility in organic thin-film transistors. Benefiting from the smaller van der Waals radius of the O atom in furan (versus the S atom in ...

      <P>A planar backbone conformation is essential for enabling polymer semiconductors with high charge carrier mobility in organic thin-film transistors. Benefiting from the smaller van der Waals radius of the O atom in furan (versus the S atom in thiophene), alkylated furan exerts a reduced steric hindrance on neighboring arene, and it was found that the head-to-head (HH)-linked 3,3′-dialkyl-2,2′-bifuran (<B>BFR</B>) can attain a high degree of backbone planarity. Hence, <B>BFR</B> should be a promising building block for constructing polymer semiconductors with a planar backbone conformation and hold distinctive advantages over a dialkylbithiophene-based analogue, which is typically highly twisted. The alkyl chains on the 3 and 3′ positions offer good solubility to the resulting polymers, which in combination with its planar backbone yields an improved molecular design window for developing high-performance polymer semiconductors, particularly those with a simple molecular structure and based on the acceptor co-unit without any solubilizing chains. When incorporated into polymer semiconductors, remarkably high hole and electron mobilities of 1.50 and 0.31 cm<SUP>2</SUP> V<SUP>-1</SUP> s<SUP>-1</SUP> are obtained for <B>BFR</B>-based polymers <B>FBFR-BO</B> and <B>CNBFR-C18</B> containing fluorinated and cyano-functionalized benzothiadiazole as the acceptor co-unit, respectively. Such mobilities are the highest values for HH-linked polymers and also among the best for furan-containing polymers. The results demonstrate that HH-linked dialkylbifuran is a highly promising building block for constructing organic and polymeric semiconductors, and this new approach by incorporating HH <B>BFR</B> offers several distinctive advantages for developing high-performance polymer semiconductors, including effective optoelectronic property tuning using a minimal number of aromatic rings, reduced structural complexity, facile material synthesis, good material solubility, and enriching the material library. In addition, the study offers important guidelines for future development of furan-based polymers and head-to-head linkage containing organic semiconductors.</P>
      [FIG OMISSION]</BR>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼