RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

      한글로보기

      https://www.riss.kr/link?id=A103269527

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed swit...

      This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency fr2n and the second series resonant frequency fr3n are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio Ln and the normalized load Q. And it requires a smaller Ln and Q to provide a sufficient voltage gain Mmax at (Vo_max, Po_max). However, the primary current increases with (LnQ)<SUP>-1</SUP>, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

      더보기

      목차 (Table of Contents)

      • Abstract
      • Ⅰ. INTRODUCTION
      • Ⅱ. OPERATIONAL PRINCIPLES
      • Ⅲ. ANALYSIS OF THE CIRCUIT PARAMETERS
      • Ⅳ. ANALYSIS OF THE CIRCUIT PARAMETERS
      • Abstract
      • Ⅰ. INTRODUCTION
      • Ⅱ. OPERATIONAL PRINCIPLES
      • Ⅲ. ANALYSIS OF THE CIRCUIT PARAMETERS
      • Ⅳ. ANALYSIS OF THE CIRCUIT PARAMETERS
      • Ⅴ. EXPERIMENTAL RESULTS
      • Ⅵ. CONCLUSIONS
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 B. Yang, "Topology investigation for frontend DC/DC power conversion for distributed power systems" Virginia Polytechnic Institute and State University 2003

      2 R. Ren, "The third harmonics current injection scheme for LLC topology to reduce the RMS of the output current" 1435-1439, 2015

      3 C. Fei, "State-trajectory control of LLC converter implemented by microcontroller" 1045-1052, 2014

      4 Q. Chen, "Soft starting strategy of bidirectional LLC resonant DC-DC transformer based on phase-shift control" 318-322, 2014

      5 M. Yilmaz, "Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles" 1-8, 2012

      6 Wenjin Sun, "Resonant Tank Design Considerations and Implementation of a LLC Resonant Converter with a Wide Battery Voltage Range" 전력전자학회 15 (15): 1446-1455, 2015

      7 H. Pan, "Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications" 7 (7): 2887-2894, 2013

      8 A. Y. Saber, "Plug-in vehicles and renewable energy sources for cost and emission reductions" 58 (58): 1229-1238, 2011

      9 J. Yamamoto, "PFM and PWM hybrid controlled LLC converter" 177-182, 2014

      10 W. Feng, "Optimal trajectory control of LLC resonant converters for soft start-up" 29 (29): 1461-1468, 2014

      1 B. Yang, "Topology investigation for frontend DC/DC power conversion for distributed power systems" Virginia Polytechnic Institute and State University 2003

      2 R. Ren, "The third harmonics current injection scheme for LLC topology to reduce the RMS of the output current" 1435-1439, 2015

      3 C. Fei, "State-trajectory control of LLC converter implemented by microcontroller" 1045-1052, 2014

      4 Q. Chen, "Soft starting strategy of bidirectional LLC resonant DC-DC transformer based on phase-shift control" 318-322, 2014

      5 M. Yilmaz, "Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles" 1-8, 2012

      6 Wenjin Sun, "Resonant Tank Design Considerations and Implementation of a LLC Resonant Converter with a Wide Battery Voltage Range" 전력전자학회 15 (15): 1446-1455, 2015

      7 H. Pan, "Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications" 7 (7): 2887-2894, 2013

      8 A. Y. Saber, "Plug-in vehicles and renewable energy sources for cost and emission reductions" 58 (58): 1229-1238, 2011

      9 J. Yamamoto, "PFM and PWM hybrid controlled LLC converter" 177-182, 2014

      10 W. Feng, "Optimal trajectory control of LLC resonant converters for soft start-up" 29 (29): 1461-1468, 2014

      11 D. Fu, "Novel multi-element resonant converters for front-end DC/DC converters" 358-364, 2008

      12 Huiqing Wen, "Nonactive power loss minimization in a bidirectional isolated DC-DC converter for distributed power systems" 61 (61): 6822-6831, 2014

      13 M. Kim, "New symmetrical bidirectional L3C resonant DC-DC converter with wide voltage range" 860-863, 2016

      14 Y. Hu, "New modular structure DC-DC converter without electrolytic capacitors for renewable energy applications" 5 (5): 1184-1192, 2014

      15 H. Wu, "Multielement resonant converters with a notch filter on secondary side" 31 (31): 3999-4004, 2016

      16 Y. Jang, "Implementation of 3. 3-kW GaN-Based DC-DC converter for EV on-board charger with series-resonant converter that employs combination of variable-frequency and delay-time control" 1292-1299, 2016

      17 Yihua Hu, "Design of a high-power, high step-up ratio modular DC-DC converter by the matrix transformer approach" 63 (63): 2190-2202, 2016

      18 S. De Simone, "Design guideline for magnetic integration in LLC resonant converters" 950-957, 2008

      19 F. Musavi, "Control strategies for wide output voltage range LLC resonant DC-DC converters in battery chargers" 63 (63): 1117-1125, 2014

      20 A. Khaligh, "Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles" 61 (61): 3475-3489, 2012

      21 D. Huang, "Classification and selection methodology for multi-element resonant converters" 558-565, 2011

      22 R. Zheng, "Analysis and parameter optimization of start-up process for LLC resonant converter" 30 (30): 7113-7122, 2015

      23 T. Mishima, "An LLC resonant fullbridge inverter-lin DC-DC converter with an anti-resonant circuit for practical voltage step-up/down regulation" 3533-3540, 2012

      24 F. Musavi, "An LLC resonant DC-DC converter for wide output voltage range battery charging applications" 28 (28): 5437-5445, 2013

      25 T. Mishima, "A sensitivity-improved PFM LLC resonant full-bridge DC-DC converter with LC anti-resonant tank circuitry" 32 (32): 2016

      26 Haoyu Wang, "A pulse width modulated LLC type resonant topology adpated to wide output voltage range" 1280-1285, 2016

      27 D. Huang, "A novel integrated multi-elements resonant converter" 3808-3815, 2011

      28 H. Wang, "A novel approach to design EV battery chargers using SEPIC PFC stage and optimal operating point tracking technique for LLC converter" 1683-1689, 2014

      29 B. K. Lee, "A PWM SRT DC_DC converter for 6. 6-kW EV onboard charger" 63 (63): 894-902, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2014-10-08 학술지명변경 한글명 : 전력전자학회 영문논문지 -> Journal of Power Electronics KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.83 0.54 0.74
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.65 0.62 0.382 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼