RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection

      한글로보기

      https://www.riss.kr/link?id=A107238618

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Many existing procedures for detecting multiple change-points in data sequences fail in frequent-change-point scenarios. This article proposes a new change-point detection methodology designed to work well in both infrequent and frequent changepoint s...

      Many existing procedures for detecting multiple change-points in data sequences fail in frequent-change-point scenarios. This article proposes a new change-point detection methodology designed to work well in both infrequent and frequent changepoint settings. It is made up of two ingredients: one is “Wild Binary Segmentation 2” (WBS2), a recursive algorithm for producing what we call a ‘complete’ solution path to the change-point detection problem, i.e. a sequence of estimated nested models containing 0, …, T − 1 change-points, where T is the data length. The other ingredient is a new model selection procedure, referred to as “Steepest Drop to Low Levels” (SDLL). The SDLL criterion acts on the WBS2 solution path, and, unlike many existing model selection procedures for change-point problems, it is not penalty-based, and only uses thresholding as a certain discrete secondary check. The resulting WBS2.SDLL procedure, combining both ingredients, is shown to be consistent, and to signifcantly outperform the competition in the frequent change-point scenarios tested. WBS2.SDLL is fast, easy to code and does not require the choice of a window or span parameter.

      더보기

      참고문헌 (Reference)

      1 Baranowski, R., "wbs: Wild binary segmentation for multiple change-point detection"

      2 Zeileis, A., "strucchange : An R package for testing for structural change in linear regression models" 7 : 1-38, 2002

      3 Pein, F, "stepR: Multiscale change-point inference"

      4 Meier, A., "mosum: Moving sum based procedures for changes in the mean"

      5 Pierre-Jean, M., "jointseg: Joint segmentation of multivariate (copy number) signals"

      6 Rigaill, G., "fpop: Segmentation using Optimal Partitioning and Function Pruning"

      7 James, N., "ecp : An R package for nonparametric multiple change point analysis of multivariate data" 62 : 1-25, 2014

      8 Muggeo V., "cumSeg: Change point detection in genomic sequences"

      9 Killick, R., "changepoint: An R package for changepoint analysis"

      10 Arlot, S, "capushe: CAlibrating Penalities Using Slope HEuristics"

      1 Baranowski, R., "wbs: Wild binary segmentation for multiple change-point detection"

      2 Zeileis, A., "strucchange : An R package for testing for structural change in linear regression models" 7 : 1-38, 2002

      3 Pein, F, "stepR: Multiscale change-point inference"

      4 Meier, A., "mosum: Moving sum based procedures for changes in the mean"

      5 Pierre-Jean, M., "jointseg: Joint segmentation of multivariate (copy number) signals"

      6 Rigaill, G., "fpop: Segmentation using Optimal Partitioning and Function Pruning"

      7 James, N., "ecp : An R package for nonparametric multiple change point analysis of multivariate data" 62 : 1-25, 2014

      8 Muggeo V., "cumSeg: Change point detection in genomic sequences"

      9 Killick, R., "changepoint: An R package for changepoint analysis"

      10 Arlot, S, "capushe: CAlibrating Penalities Using Slope HEuristics"

      11 Fryzlewicz, P., "breakfast: Multiple change-point detection and segmentation"

      12 Fryzlewicz, P., "Wild binary segmentation for multiple change-point detection" 42 : 2243-2281, 2014

      13 Lavielle, M., "Using penalized contrasts for the change-point problem" 85 : 1501-1510, 2005

      14 Wang, D., "Univariate mean change point detection: Penalization" CUSUM and optimality 2018

      15 Salarijazi, M., "Trend and change-point detection for the annual stream-fow series of the Karun River at the Ahvaz hydrometric station" 7 : 4540-4552, 2012

      16 Hansen, B., "The new econometrics of structural change : Dating breaks in U. S. labour productivity" 15 : 117-128, 2001

      17 Fryzlewicz, P., "Tail-greedy bottom-up data decompositions and fast multiple change-point detection" 46 : 3390-3421, 2018

      18 Davis, R., "Structural break estimation for nonstationary time series models" 101 : 223-239, 2006

      19 Du, C., "Stepwise signal extraction via marginal likelihood" 111 : 314-330, 2016

      20 Braun, J., "Statistical methods for DNA sequence segmentation" 13 : 142-162, 1998

      21 Tibshirani, R., "Sparsity and smoothness via the fused lasso" 67 : 91-108, 2005

      22 Baudry, J. -P., "Slope heuristics : Overview and implementation" 22 : 455-470, 2012

      23 Wu, Y., "Simultaneous change point analysis and variable selection in a regression problem" 99 : 2154-2171, 2008

      24 Truong, C., "Selective review of ofine change point detection methods" 167 : 107299-, 2020

      25 Cleynen, A., "Segmentor3IsBack: A fast segmentation algorithm"

      26 Rinaldo, A., "Properties and refnements of the fused lasso" 37 : 2922-2952, 2009

      27 Huskova, M., "Permutation tests for multiple changes" 37 : 605-622, 2001

      28 Ross, G. J., "Parametric and nonparametric sequential change detection in R : the cpm package" 66 : 1-20, 2015

      29 Ranganathan, A., "PLISS : Labeling places using online changepoint detection" 32 : 351-368, 2012

      30 Killick, R., "Optimal detection of changepoints with a linear computational cost" 107 : 1590-1598, 2012

      31 Maidstone, R., "On optimal multiple changepoint algorithms for large data" 27 : 519-533, 2017

      32 Rojas, C., "On change point detection using the fused lasso method"

      33 Bosq, D., "Nonparametric statistics for stochastic processes" Springer 1998

      34 Brodsky, B., "Nonparametric methods in change-point problems" Kluwer Academic Publishers 1993

      35 Baranowski, R., "Narrowest-Over-Threshold detection of multiple change-points and change-point-like features" 81 : 649-672, 2019

      36 Cho, H., "Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets" 21 : 671-681, 2011

      37 Frick, K., "Multiscale change-point inference(with discussion)" 76 : 495-580, 2014

      38 Cho, H., "Multiscale and multilevel technique for consistent segmentation of nonstationary time series" 22 : 207-229, 2012

      39 Galceran, E., "Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction" 11 : 2015

      40 Fryzlewicz, P., "Multiple-change-point detection for auto-regressive conditional heteroscedastic processes" 76 : 903-924, 2014

      41 Braun, J., "Multiple changepoint ftting via quasilikelihood, with application to dna sequence segmentation" 87 : 301-314, 2000

      42 Harchaoui, Z., "Multiple change-point estimation with a total variation penalty" 105 : 1480-1493, 2010

      43 Korkas, K., "Multiple change-point detection for non-stationary time series using wild binary segmentation" 27 : 287-311, 2017

      44 Cho, H., "Multiple change-point detection for high-dimensional time series via sparsifed binary segmentation" 77 : 475-507, 2015

      45 Ciuperca, G., "Model selection by LASSO methods in a change-point model" 55 : 349-374, 2014

      46 Birgé, L., "Minimal penalties for Gaussian model selection" 138 : 33-73, 2007

      47 Arlot, S., "Minimal penalties and the slope heuristics : A survey" 160 : 1-106, 2019

      48 Davies, P. L., "Local extremes, runs, strings and multiresolution" 29 : 1-48, 2001

      49 Lavielle, M., "Least-squares estimation of an unknown number of shifts in a time series" 21 : 33-59, 2000

      50 Yao, Y. -C., "Least-squares estimation of a step function" 51 : 370-381, 1989

      51 Efron, B., "Least angle regression" 32 : 407-499, 2004

      52 Wang, Y., "Jump and sharp cusp detection by wavelets" 82 : 385-397, 1995

      53 Younes, L., "Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease" 5 : 178-187, 2014

      54 D’Angelo, M., "Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach" 11 : 179-192, 2011

      55 Liu, D., "Impacts of climate change and human activities on surface runof in the Dongjiang River basin of China" 24 : 1487-1495, 2010

      56 Anastasiou, A., "IDetect: Detecting multiple generalized change-points by isolating single ones"

      57 Wang, T., "High dimensional change point estimation via sparse projection" 80 : 57-83, 2018

      58 Birgé, L., "Gaussian model selection" 3 : 203-268, 2001

      59 National Research Council, "Frontiers in Massive Data Analysis" The National Academies Press 2013

      60 Pezzatti, G., "Fire regime shifts as a consequence of fre policy and socio-economic development: An analysis based on the change point approach" 29 : 7-18, 2013

      61 Li, H., "FDRSeg: FDR-control in multiscale change-point segmentation"

      62 Li, H., "FDR-control in multiscale change-point segmentation" 10 : 918-959, 2016

      63 Huang, C. -Y., "Estimation and analysis of some generalized multiple change-point software reliability models" 60 : 498-514, 2011

      64 Yao, Y. -C., "Estimating the number of change-points via Schwarz’ criterion" 6 : 181-189, 1988

      65 Lee, C. -B., "Estimating the number of change points in a sequence of independent normal random variables" 25 : 241-248, 1995

      66 Muggeo, V., "Estimating regression models with unknown break-points" 22 : 3055-3071, 2003

      67 Bai, J., "Estimating multiple breaks one at a time" 13 : 315-352, 1997

      68 Muggeo, V., "Efcient change point detection for genomic sequences of continuous measurements" 27 : 161-166, 2011

      69 Lavielle, M., "Detection of multiple changes in a sequence of dependent variables" 83 : 79-102, 1999

      70 Vostrikova, L., "Detecting ‘disorder’ in multidimensional random processes" 24 : 55-59, 1981

      71 Anastasiou, A., "Detecting multiple generalized change-points by isolating single ones" 2018

      72 Lebarbier, E., "Detecting multiple change-points in the mean of Gaussian process by model selection" 85 : 717-736, 2005

      73 Andreou, E., "Detecting multiple breaks in fnancial market volatility dynamics" 17 : 579-600, 2002

      74 Chen, K. -M., "Consistent multiple testing for change points" 102 : 1339-1343, 2011

      75 Venkatraman, E. S., "Consistency results in multiple change-point problems" Department of Statistics, Stanford University 1992

      76 Boysen, L., "Consistencies and rates of convergence of jump-penalized least squares estimators" 37 : 157-183, 2009

      77 Bai, J., "Computation and analysis of multiple structural change models" 18 : 1-22, 2003

      78 Olshen, A., "Circular binary segmentation for the analysis of array-based DNA copy number data" 5 : 557-572, 2004

      79 Amiri, A., "Change point estimation methods for control chart postsignal diagnostics : A literature review" 28 : 673-685, 2012

      80 Pan, J., "Application of modifed information criterion to multiple change point problems" 97 : 2221-2241, 2006

      81 Mallows, C., "Another comment on O’Cinneide" 45 : 257-, 1991

      82 Lin, K., "Advances in neural information processing systems" Curran Associates, Inc 6884-6893, 2017

      83 Guntuboyina, A., "Adaptive risk bounds in univariate total variation denoising and trend fltering" 48 : 205-229, 2020

      84 Tibshirani, R., "Adaptive piecewise polynomial estimation via trend fltering" 42 : 285-323, 2014

      85 Reeves, J., "A review and comparison of changepoint detection techniques for climate data" 46 : 900-915, 2007

      86 Rigaill, G., "A pruned dynamic programming algorithm to recover the best segmentations with 1 to kmax change-points" 156 : 180-205, 2015

      87 Matteson, D., "A nonparametric approach for multiple change point analysis of multivariate data" 109 : 334-345, 2014

      88 Zhang, N., "A modifed Bayes information criterion with applications to the analysis of comparative genomic hybridization data" 63 : 22-32, 2007

      89 Ciuperca, G., "A general criterion to determine the number of change-points" 81 : 1267-1275, 2011

      90 Venkatraman, E. S., "A faster circular binary segmentation algorithm for the analysis of array CGH data" 23 : 657-663, 2007

      91 Eichinger, B., "A MOSUM procedure for the estimation of multiple random change points" 24 : 526-564, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-17 학술지명변경 한글명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      외국어명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.14 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.25 0.352 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼