이 연구에서는 합성가스를 유일한 탄소원으로 사용하는 Clostridium autoethanogenum 배양에서 배지 성분 중 금속이온의 농도가 균주 성장과 대사산물 생산에 미치는 영향을 조사하였다. C. autoethanog...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106986435
2020
-
KCI등재,SCOPUS,ESCI
학술저널
423-428(6쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
이 연구에서는 합성가스를 유일한 탄소원으로 사용하는 Clostridium autoethanogenum 배양에서 배지 성분 중 금속이온의 농도가 균주 성장과 대사산물 생산에 미치는 영향을 조사하였다. C. autoethanog...
이 연구에서는 합성가스를 유일한 탄소원으로 사용하는 Clostridium autoethanogenum 배양에서 배지 성분 중 금속이온의 농도가 균주 성장과 대사산물 생산에 미치는 영향을 조사하였다. C. autoethanogenum 배양에 사용되는 기본 배지구성 성분의 금속이온 종류 중 molybdenum, nickel, cobalt를 조사 대상으로 선정하여 이 성분들의 농도를 달리하였을 때 균주 성장과 에탄올, 아세트산 생산에 미치는 영향을 확인하였다. Molybdenum은 0, 0.001, 0.01, 0.1 g/L농도를 시험하였으며 0.001 g/L에서 에탄올 생산량이 약간 증가하는 경향을 보였지만 시험한 농도 범위 내에서 뚜렷한 영향이 관찰되지 않았다. Nickel은 0, 0.001, 0.01, 0.1 g/L의 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 관찰하였으며, 0.01 g/L 농도에서 에탄올 생산농도가 기본 배지 농도인 0.1 g/L에서보다 26% 증가되는 것을 확인하였다. Cobalt는 0, 0.018, 0.18, 1.8 g/L 농도 범위에서 균주 성장과 에탄올 생산에 미치는 영향을 분석하였으며, 기본 배지 조건인 0.18 g/L의 이상의 농도에서는 균주 성장이 약간 저해되는 현상이 관찰되었다. 결과적으로 연구에 사용된 세 가지 금속이온 성분 중 cobalt는 배지 내 성분 농도에 따른 에탄올 생산농도 향상을 이루지 못하였으나, molybdenum, nickel은 기본 배지 내 일반적인 농도의 1/10을 사용함으로써 에탄올 생산농도 향상을 이룰 수 있었다.
다국어 초록 (Multilingual Abstract)
In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon sou...
In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.
참고문헌 (Reference)
1 P. Di Donato, "The production of second generation bioethanol : The biotechnology potential of thermophilic bacteria" 233 : 1410-1417, 2019
2 C. Liu, "The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation" 224 : 537-544, 2018
3 H. Heiskanen, "The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum" 41 : 362-367, 2007
4 X. Sun, "Syngas fermentation process development for production of biofuels and chemicals : A review" 7 : 100279-, 2019
5 K. Arslan, "Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas" 292 : 121941-, 2019
6 P. R. Nimbalkar, "Role of trace elements as cofactor : An efficient strategy toward enhanced biobutanol production" 6 : 9304-9313, 2018
7 A. Hassen, "Resistance of environmental bacteria to heavy metals" 64 : 7-15, 1998
8 I. Yamamoto, "Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein" 258 : 1826-1832, 1983
9 H. N. Abubackar, "Production of acids and alcohols from syngas in a two-stage continuous fermentation process" 253 : 227-234, 2018
10 O. Pardo-Planas, "Process simulation of ethanol production from biomass gasification and syngas fermentation" 245 : 925-932, 2017
1 P. Di Donato, "The production of second generation bioethanol : The biotechnology potential of thermophilic bacteria" 233 : 1410-1417, 2019
2 C. Liu, "The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation" 224 : 537-544, 2018
3 H. Heiskanen, "The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum" 41 : 362-367, 2007
4 X. Sun, "Syngas fermentation process development for production of biofuels and chemicals : A review" 7 : 100279-, 2019
5 K. Arslan, "Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas" 292 : 121941-, 2019
6 P. R. Nimbalkar, "Role of trace elements as cofactor : An efficient strategy toward enhanced biobutanol production" 6 : 9304-9313, 2018
7 A. Hassen, "Resistance of environmental bacteria to heavy metals" 64 : 7-15, 1998
8 I. Yamamoto, "Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein" 258 : 1826-1832, 1983
9 H. N. Abubackar, "Production of acids and alcohols from syngas in a two-stage continuous fermentation process" 253 : 227-234, 2018
10 O. Pardo-Planas, "Process simulation of ethanol production from biomass gasification and syngas fermentation" 245 : 925-932, 2017
11 J. Saxena, "Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei" 28 : 1553-1561, 2012
12 Y. Guo, "Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source" 101 : 8784-8789, 2010
13 J. L. Cotter, "Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas" 44 : 281-288, 2009
14 H. N. Abubackar, "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia" 169 : 210-217, 2016
15 S. E Park, "Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing culture medium composition" 6 : 237-240, 2019
16 J. R. Andreesen, "Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme" 116 : 867-873, 1973
17 D. K. Kundiyana, "Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation" 101 : 9673-9680, 2010
18 J. Chen, "Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum" 129 : 64-73, 2018
19 R. Zabihi, "Examination of the impacts of salinity and culture media compositions on Clostridium acetobutylicum NRRL B-591 growth and acetone-butanol-ethanol biosynthesis" 7 : 102835-, 2019
20 G. Najafpour, "Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii" 38 : 223-228, 2006
21 A. Singla, "Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol" 172C : 41-49, 2014
22 X. Sun, "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar" 236 : 1269-1279, 2019
23 F. Ammam, "Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata" 9 : 163-, 2016
24 J. Saxena, "Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen Clostridium ragsdalei" 38 : 513-521, 2011
25 D. K. Kundiyana, "Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation" 102 : 6058-6064, 2011
26 L. M. Paulo, "Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation" 8 : 1341-, 2017
27 K. C. Terlesky, "EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila" 262 : 15392-15395, 1987
28 J. Jack, "Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas" 124 : 95-101, 2019
29 임홍래, "Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 비타민과 황 공급원의 영향" 한국공업화학회 30 (30): 681-686, 2019
30 H. N. Abubackar, "Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid" 186 : 122-127, 2015
31 J. R. Phillips, "Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation : Medium development and culture techniques" 190 : 114-121, 2015
32 H. Xu, "A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system" 101 : 24-29, 2017
술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성
청원 지역 쌀단백질 추출물의 항산화 및 수분 보유력 평가
회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | |
2013-12-01 | 평가 | SCOPUS 등재 (등재유지) | |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2010-02-19 | 학술지명변경 | 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering | |
2009-04-28 | 학술지명변경 | 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry | |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.32 | 0.32 | 0.34 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.33 | 0.33 | 0.45 | 0.05 |