RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Nonmucoid conversion of mucoid Pseudomonas aeruginosa induced by sulfate-stimulated growth.

      한글로보기

      https://www.riss.kr/link?id=A107504439

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Alginate-overproducing mucoid Pseudomonas aeruginosa, responsible for chronic airway infections in cystic fibrosis (CF) patients, is resistant to antibiotic treatments and host immune clearance. In this study, we performed a phenotype microar...

      <P>Alginate-overproducing mucoid Pseudomonas aeruginosa, responsible for chronic airway infections in cystic fibrosis (CF) patients, is resistant to antibiotic treatments and host immune clearance. In this study, we performed a phenotype microarray screen and identified sulfate ion as a molecule that can suppress alginate production. When a mucoid P. aeruginosa strain CM21 and additional mucoid isolates were grown with 5% sodium sulfate, significantly decreased levels of alginate were produced. Suppression of alginate production was also induced by other sulfate salts. Expression of a reporter gene fused to the algD promoter was considerably decreased when grown with sulfate. Furthermore, bacterial cell shape was abnormally altered in CM21, but not in PAO1, a prototype nonmucoid strain, suggesting that sulfate-stimulated cell shape change is associated with transcriptional suppression of the alginate operon. Finally, a CM21 lpxC mutant defective in lipid A biosynthesis continued to produce alginate and maintained the correct cell shape when grown with sulfate. These results suggest a potential involvement of lipoploysaccharide biosynthesis in the sulfate-induced reversion to nonmucoid phenotype. This study proposes a novel strategy that can be potentially applied to treat persistent infection by recalcitrant mucoid P. aeruginosa.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼