RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)

      한글로보기

      https://www.riss.kr/link?id=A107440070

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The thermally induced phase separation (TIPS) method is regaining momentum as a competitive platform to fabricate highly porous microporous membranes. In membrane technology, there has been an active search for more sustainable ways to fabricate polym...

      The thermally induced phase separation (TIPS) method is regaining momentum as a competitive platform to fabricate highly porous microporous membranes. In membrane technology, there has been an active search for more sustainable ways to fabricate polymeric membranes using green solvents. Rhodiasolv PolarClean® is a recently identified environmentally friendly TIPS solvent that shows high potential for the preparation of microporous PVDF membranes. Interestingly, its high miscibility with water induces a nonsolvent-induced phase separation (NIPS) effect on the membrane surface and this simultaneous NIPS-TIPS effect is referred to as the combined NIPS-TIPS (N-TIPS) method. In this work, a thorough investigation was carried out to understand the underlying phenomena in the membrane formation kinetics during the N-TIPS process. It was found that the NIPS and TIPS morphology can be tailored to control the mechanical properties, pore size distribution, and flux of the prepared membranes. For instance, increasing the coagulation bath solvent concentration facilitated the formation of a spherulitic morphology, whereas increasing the bath temperature induced the formation of a bicontinuous morphology free of macrovoids. It was determined that by controlling the phase separation kinetics, the mechanical properties of the prepared PVDF membranes could be remarkably improved from 0.9MPa to 6.1MPa. Several pore-forming additives including polyvinylpyrrolidone, Pluronics F-127, LiCl, and glycerol were employed to induce surface pores and their effects were thoroughly characterized. The membranes prepared with Pluronic additives exhibited high water permeabilities up to 2800Lm<SUP>-2</SUP>h<SUP>-1</SUP>bar<SUP>-1</SUP> with narrow pore size distributions.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼