RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      DEGREE REDUCTION OF BEZIER CURVES WITH CHEBYSHEV WEIGHTED G3-CONTINUITY

      한글로보기

      https://www.riss.kr/link?id=A107247408

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper considers Chebyshev weighted G3-multi-degree reduction of B´ezier curves. Exact degree reduction is not possible, based on this fact, approximative process to reduce a given B´ezier curve of higher degree n to a B´ezier curve of lower de...

      This paper considers Chebyshev weighted G3-multi-degree reduction of B´ezier curves. Exact degree reduction is not possible, based on this fact, approximative process to reduce a given B´ezier curve of higher degree n to a B´ezier curve of lower degree m, m<n is required. The weight function w[t]=2t(1 − t), t ∈ [0, 1] is used with the L2 -norm in multi degree reduction with G3- continuity at the end points of the curve. Explicit results and comparisons are verified by examples. The numerical result obtained from the new method yields minimum approximation error, improves the approximation in the middle of the curve, and shows up helpful applications to many scientists and engineers on how to design and reconstruct complex systems.

      더보기

      참고문헌 (Reference)

      1 Rababah A, "Weighted G1-Multi-Degree Reduction of B ezier Curves" 7 : 540-545, 2016

      2 Rababah A, "Weighted G0- and G1 multi-degree reduction of Bezier curves" 7 (7): 2016

      3 Rababah A, "Weighted Degree Reduction of B ezier Curves with G2 -continuity" 3 : 13-18, 2016

      4 Ait-Haddou R., "Polynomial degree reduction in the discrete L2-norm equals best Euclidean approximation of h-Bezier coefficients" 2016

      5 Lutterkort D, "Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bezier coefficients" 16 : 607-612, 1999

      6 Lu L, "Optimal multi-degree reduction of B ezier curves with G2-continuity" 23 : 673-683, 2006

      7 Simsek Y, "On Bernstein type polynomials and their Applications" 79 : 1-11, 2015

      8 Rababah A, "Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis trans-formations" 28 (28): 1179-1196, 2007

      9 Hong-Seng Gan, "Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement, Data from the Osteoarthritis Initiative" 2014

      10 Rababah A, "Linear Methods for G1, G2, and G3 Multi-Degree Reduction of Bezier Curves" 45 : 405-414, 2013

      1 Rababah A, "Weighted G1-Multi-Degree Reduction of B ezier Curves" 7 : 540-545, 2016

      2 Rababah A, "Weighted G0- and G1 multi-degree reduction of Bezier curves" 7 (7): 2016

      3 Rababah A, "Weighted Degree Reduction of B ezier Curves with G2 -continuity" 3 : 13-18, 2016

      4 Ait-Haddou R., "Polynomial degree reduction in the discrete L2-norm equals best Euclidean approximation of h-Bezier coefficients" 2016

      5 Lutterkort D, "Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bezier coefficients" 16 : 607-612, 1999

      6 Lu L, "Optimal multi-degree reduction of B ezier curves with G2-continuity" 23 : 673-683, 2006

      7 Simsek Y, "On Bernstein type polynomials and their Applications" 79 : 1-11, 2015

      8 Rababah A, "Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis trans-formations" 28 (28): 1179-1196, 2007

      9 Hong-Seng Gan, "Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement, Data from the Osteoarthritis Initiative" 2014

      10 Rababah A, "Linear Methods for G1, G2, and G3 Multi-Degree Reduction of Bezier Curves" 45 : 405-414, 2013

      11 Rababah A, "L-2 degree reduction of triangular B ezier surfaces with common tangent planes at vertices" 15 : 477-490, 2005

      12 Rababah A, "Geometric Degree Reduction of Bezier Curves" 253 : 87-95, 2018

      13 Arun Vijayaragavan, "Cubic Bezier Curve Approach for Automated O ine Signature Verification with Intrusion Identification" 2014 : 1-8, 2014

      14 Ahn Y, "Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approx. of Bezier coefficients" 21 : 181-191, 2004

      15 Hollig K, "Approximation and Modeling with B-Splines" 132 : 2013

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2024 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      2020-12-01 평가 등재 탈락 (해외등재 학술지 평가)
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2008-04-08 학회명변경 한글명 : 장전수리과학회 -> 장전수학회(章田數學會) KCI등재후보
      2008-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.16 0.16 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.27 0.609 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼