RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      구조 정보 기반의 온톨로지 커널을 이용한 온톨로지 정렬 = An Ontology Alignment with Reflecting Structure Information on Ontology

      한글로보기

      https://www.riss.kr/link?id=T12342209

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An ontology is a formalized specification for conceptualization in a specific domain. Thus, a computer can understand the human knowledge by adopting an ontology. However, since there exist numerous ontologies which are differently expressed with same human knowledge in the same domain, ontology interaction is too hard in the semantic web field. Ontology Alignment is one of the methods to solve the problem. Given two ontologies, ontology alignment aims to combine entities which have the same semantic. In this paper, we proposed a graph kernel specialized for ontology alignment. An ontology consists of five components such as concept, instance, data type, data value, and property. In the proposed kernel, ontology kernel, these components are considered when they are compared. Thus, the ontology kernel can be reflect more valuable structure information on an ontology than the ordinary graph kernel. The experimental results show that ontology kernel outperforms the ordinary graph kernel with respect to both the performance and practical computational time. In comparison with ontology alignment systems from OAEI 2009, the ontology kernel also get more advanced performance than others.
      번역하기

      An ontology is a formalized specification for conceptualization in a specific domain. Thus, a computer can understand the human knowledge by adopting an ontology. However, since there exist numerous ontologies which are differently expressed with same...

      An ontology is a formalized specification for conceptualization in a specific domain. Thus, a computer can understand the human knowledge by adopting an ontology. However, since there exist numerous ontologies which are differently expressed with same human knowledge in the same domain, ontology interaction is too hard in the semantic web field. Ontology Alignment is one of the methods to solve the problem. Given two ontologies, ontology alignment aims to combine entities which have the same semantic. In this paper, we proposed a graph kernel specialized for ontology alignment. An ontology consists of five components such as concept, instance, data type, data value, and property. In the proposed kernel, ontology kernel, these components are considered when they are compared. Thus, the ontology kernel can be reflect more valuable structure information on an ontology than the ordinary graph kernel. The experimental results show that ontology kernel outperforms the ordinary graph kernel with respect to both the performance and practical computational time. In comparison with ontology alignment systems from OAEI 2009, the ontology kernel also get more advanced performance than others.

      더보기

      목차 (Table of Contents)

      • I. 서 론 1
      • II. 관련 연구 6
      • 2.1 온톨로지 정렬 6
      • 2.2 커널 기반의 온톨로지 정렬 7
      • 2.3 OAEI 2009에 참가한 시스템 8
      • I. 서 론 1
      • II. 관련 연구 6
      • 2.1 온톨로지 정렬 6
      • 2.2 커널 기반의 온톨로지 정렬 7
      • 2.3 OAEI 2009에 참가한 시스템 8
      • III. 커널을 이용한 온톨로지 정렬 12
      • 3.1 커널 함수 12
      • 3.2 랜덤 워크 그래프 커널 13
      • 3.2 그래프 추출 및 온톨로지 커널 17
      • IV. 실험 및 평가 25
      • 4.1 실험 데이터 25
      • 4.2 성능 평가 함수 25
      • 4.3 실험 결과 및 분석 27
      • V. 결론 및 향후연구 35
      • 참고 문헌 37
      • 영문 초록 41
      • 부 록 43
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼