RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Direct printing of anisotropic wetting patterns using aerodynamically focused nanoparticle (AFN) printing

      한글로보기

      https://www.riss.kr/link?id=A107502017

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Micro- and nanoscale structures are of interest in various engineering fields due to their unique properties, such as hydrophobicity. In particular, micro/nano hierarchical structures have been ...

      <P><B>Abstract</B></P> <P>Micro- and nanoscale structures are of interest in various engineering fields due to their unique properties, such as hydrophobicity. In particular, micro/nano hierarchical structures have been investigated to promote surface hydrophobicity. Here, aerodynamically focused nanoparticle (AFN) printing was used for direct printing of superhydrophobic patterns. As AFN printing is a room-temperature direct printing technique, printed features have a hierarchical structure of two levels; nanoscale porous surface and microscale-printed patterns in three-dimensional structures. Moreover, because it is an additive fabrication technique, the printed pattern is repairable and can be reconfigured as desired. In this study, silver nanoparticles were used to implement a superhydrophobic pattern with a minimum width of tens of microns. The contact angle of water droplets was measured for various patterns, and the effects of nanoscale porosity and pattern interval were investigated. In addition, patterns were designed and fabricated to have anisotropic superhydrophobicity. The experimental results were analyzed and explained with the classical Wenzel and Cassie–Baxter models.</P> <P><B>Highlights</B></P> <P> <UL> <LI> AFN printing was used to print superhydrophobic patterns on silicon substrates. </LI> <LI> A lattice pattern was fabricated using silver nanoparticles to form a hierarchical structure. </LI> <LI> Printed features have nanoscale porous surfaces on microscale patterns. </LI> <LI> Superhydrophobicity was observed for various pattern intervals in lattice patterns. </LI> <LI> Patterns were designed and fabricated to have anisotropic superhydrophobicity. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼