RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Uniform distribution width estimation from data observed with Laplace additive error

      한글로보기

      https://www.riss.kr/link?id=A103558452

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A one-dimensional problem of a uniform distribution width estimation from data observed with a Laplace additive error is analyzed. The error variance is considered as a nuisance parameter and it is supposed to be known or consistently estimated before. It is proved that the maximum likelihood estimator in the described model is consistent and asymptotically efficient and sufficient conditions for its existence are given. The method of moment estimator is also analyzed in this model and compared with the maximum likelihood estimator theoretically and in simulations. Finally, one real-world example illustrates the possibility for applications in two-dimensional problems.
      번역하기

      A one-dimensional problem of a uniform distribution width estimation from data observed with a Laplace additive error is analyzed. The error variance is considered as a nuisance parameter and it is supposed to be known or consistently estimated before...

      A one-dimensional problem of a uniform distribution width estimation from data observed with a Laplace additive error is analyzed. The error variance is considered as a nuisance parameter and it is supposed to be known or consistently estimated before. It is proved that the maximum likelihood estimator in the described model is consistent and asymptotically efficient and sufficient conditions for its existence are given. The method of moment estimator is also analyzed in this model and compared with the maximum likelihood estimator theoretically and in simulations. Finally, one real-world example illustrates the possibility for applications in two-dimensional problems.

      더보기

      참고문헌 (Reference)

      1 Huber, P. J., "The behavior of maximum likelihood estimates under nonstandard conditions" 1 : 221-233, 1967

      2 Daniels, H. E., "The asymptotic efficiency of a maximum likelihood estimator" 1 : 151-164, 1961

      3 Huber, P. J., "Robust statistics" John Wiley & Sons, Inc. 2009

      4 Ruzin, S. E., "Plant microtechnique and microscopy" Oxford University Press 1999

      5 Carroll, R. J., "Optimal rates of convergence for deconvoluting a density" 83 : 1184-1186, 1988

      6 Neumann, M. H., "Optimal change-point estimation in inverse problems" 24 : 503-521, 1997

      7 Fan, J., "On the optimal rates of convergence for nonparametric deconvolution problems" 19 : 1257-1272, 1991

      8 Feuerverger, A., "On optimal uniform deconvolution" 2 : 433-451, 2008

      9 Sterflinger, K., "Multiple stress factors affecting growth of rock-inhabiting black fungi" 108 : 490-496, 1995

      10 Frishman, D., "Knowledge-based secondary structure assignment" 23 : 566-579, 1995

      1 Huber, P. J., "The behavior of maximum likelihood estimates under nonstandard conditions" 1 : 221-233, 1967

      2 Daniels, H. E., "The asymptotic efficiency of a maximum likelihood estimator" 1 : 151-164, 1961

      3 Huber, P. J., "Robust statistics" John Wiley & Sons, Inc. 2009

      4 Ruzin, S. E., "Plant microtechnique and microscopy" Oxford University Press 1999

      5 Carroll, R. J., "Optimal rates of convergence for deconvoluting a density" 83 : 1184-1186, 1988

      6 Neumann, M. H., "Optimal change-point estimation in inverse problems" 24 : 503-521, 1997

      7 Fan, J., "On the optimal rates of convergence for nonparametric deconvolution problems" 19 : 1257-1272, 1991

      8 Feuerverger, A., "On optimal uniform deconvolution" 2 : 433-451, 2008

      9 Sterflinger, K., "Multiple stress factors affecting growth of rock-inhabiting black fungi" 108 : 490-496, 1995

      10 Frishman, D., "Knowledge-based secondary structure assignment" 23 : 566-579, 1995

      11 Qiu, P., "Image processing and jump regression analysis" John Wiley&Sons, Inc. 2005

      12 Zhang, C. H., "Fourier methods for estimating mixing densities and distributions" 18 : 806-830, 1990

      13 Kaufman, L., "Finding groups in data: An introduction to cluster analysis" John Wiley & Son 2005

      14 Delaigle, A., "Estimation of boundary and discontinuity points in deconvolution problems" 16 : 773-788, 2006

      15 Benšić, M., "Estimating the width of a uniform distribution when data are measured with additive normal errors with known variance" 51 : 4731-4741, 2007

      16 Meister, A., "Estimating the support of multivariate densities under measurement error" 97 : 1702-1717, 2006

      17 Schneeweiss, H., "Estimating the endpoint of a uniform distribution under measurement errors" 12 : 221-231, 2004

      18 Benšić, M., "Estimating a uniform distribution when data are measured with a normal additive error with unknown variance" 44 : 235-246, 2010

      19 Kabsch, W., "Dictionary of protein secondary structure : pattern recognition of hydrogen-bonded and geometrical features" 22 : 2577-2637, 1983

      20 Garlipp, T., "Detection of linear and circular shapes in image analysis" 51 : 1479-1490, 2006

      21 Stefanski, L., "Deconvoluting kernel density estimators" 21 : 169-184, 1990

      22 Sabo, K., "Center-based l1-clustering method" 24 : 151-163, 2014

      23 Zhang, S., "Boundary bias correction for nonparametric deconvolution" 52 : 612-629, 2000

      24 Benšić, M., "Border estimation of a two-dimensional uniform distribution if data are measured with additive error" 41 : 311-319, 2007

      25 Sabo, K., "Border estimation of a disc observed with random errors solved in two steps" 229 : 16-26, 2009

      26 Williamson, J. A., "A note on the proof by H. E. Daniels of the asymptotic efficiency of a maximum likelihood estimator" 71 : 651-653, 1984

      27 Kneip, A., "A general framework for frontier estimation with panel data" 7 : 187-212, 1996

      28 Scitovski, R., "A fast partitioning algorithm and its application to earthquake investigation" 59 : 124-131, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-17 학술지명변경 한글명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      외국어명 : Journal of the Korean StatisticalSociety -> Journal of the Korean Statistical Society
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.14 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.25 0.352 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼