RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝을 이용한 CT 영상에서 생체 공여자의 간 절제율 및 재생률 측정 = Measurements of the Hepatectomy Rate and Regeneration Rate Using Deep Learning in CT Scan of Living Donors

      한글로보기

      https://www.riss.kr/link?id=A108394495

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Liver transplantation is a critical used treatment method for patients with end-stage liver disease. The number of cases of living donor liver transplantation is increasing due to the imbalance in needs and supplies for brain-dead organ donation. As a...

      Liver transplantation is a critical used treatment method for patients with end-stage liver disease. The number of cases of living donor liver transplantation is increasing due to the imbalance in needs and supplies for brain-dead organ donation. As a result, the importance of the accuracy of the donor’s suitability evaluation is also increasing rapidly. To measure the donor’s liver volume accurately is the most important, that is absolutely necessary for the recipient's postoperative progress and the donor’s safety. Therefore, we propose liver segmentation in abdom- inal CT images from pre-operation, POD 7, and POD 63 with a two-dimensional U-Net. In addition, we introduce an algorithm to measure the volume of the segmented liver and measure the hepatectomy rate and regeneration rate of pre-operation, POD 7, and POD 63. The performance for the learning model shows the best results in the images from pre-operation. Each dataset from pre-operation, POD 7, and POD 63 has the DSC of 94.55 ± 9.24%, 88.40 ± 18.01%, and 90.64 ± 14.35%. The mean of the measured liver volumes by trained model are 1423.44 ± 270.17 ml in pre-operation, 842.99 ± 190.95 ml in POD 7, and 1048.32 ± 201.02 ml in POD 63. The donor’s hepatectomy rate is an average of 39.68 ± 13.06%, and the regeneration rate in POD 63 is an average of 14.78 ± 14.07%.

      더보기

      참고문헌 (Reference) 논문관계도

      1 강민 ; 최남길 ; 한재복 ; 김욱 ; 장영일 ; 송종남, "복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구" 한국방사선학회 9 (9): 9-16, 2015

      2 "https://patents.google.com/patent/KR20110124036A/ko"

      3 Ronneberger O, "U-net: Convolutional net-works for biomedical image segmentation" 234-241, 2015

      4 Gayet B, "Totally laparoscopic right hepatectomy" 194 (194): 685-689, 2007

      5 Clark JM, "The prevalence and etiol-ogy of elevated aminotransferase levels in the United States" 98 (98): 960-967, 2003

      6 Grubb K, "Surgical clips : a nidus for foreign body reaction after hepatic resection" 15 (15): 363-365, 2005

      7 Ferrero A, "Postoperative liver dysfunction and future remnant liver : where is the limit?" 31 (31): 1643-1651, 2007

      8 Withey DJ, "Medical image segmentation: Methods and software" 140-143, 2007

      9 Chung M, "Liver seg-mentation in abdominal CT images via auto-context neural net-work and self-supervised contour attention" 113 : 102023-, 2021

      10 Tschirren J, "Intratho-racic airway trees : segmentation and airway morphology analysis from low-dose CT scans" 24 (24): 1529-1539, 2005

      1 강민 ; 최남길 ; 한재복 ; 김욱 ; 장영일 ; 송종남, "복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구" 한국방사선학회 9 (9): 9-16, 2015

      2 "https://patents.google.com/patent/KR20110124036A/ko"

      3 Ronneberger O, "U-net: Convolutional net-works for biomedical image segmentation" 234-241, 2015

      4 Gayet B, "Totally laparoscopic right hepatectomy" 194 (194): 685-689, 2007

      5 Clark JM, "The prevalence and etiol-ogy of elevated aminotransferase levels in the United States" 98 (98): 960-967, 2003

      6 Grubb K, "Surgical clips : a nidus for foreign body reaction after hepatic resection" 15 (15): 363-365, 2005

      7 Ferrero A, "Postoperative liver dysfunction and future remnant liver : where is the limit?" 31 (31): 1643-1651, 2007

      8 Withey DJ, "Medical image segmentation: Methods and software" 140-143, 2007

      9 Chung M, "Liver seg-mentation in abdominal CT images via auto-context neural net-work and self-supervised contour attention" 113 : 102023-, 2021

      10 Tschirren J, "Intratho-racic airway trees : segmentation and airway morphology analysis from low-dose CT scans" 24 (24): 1529-1539, 2005

      11 Abdalla EK, "Improving resectability of hepatic colorectal metasta-ses : expert consensus statement" 13 (13): 1271-1280, 2006

      12 Starzl TE, "Evolution of liver transplantation" 2 (2): 614-, 1982

      13 Yao AD, "Deep learning in neu-roradiology: a systematic review of current algorithms and approaches for the new wave of imaging technology" 2 (2): e190026-, 2020

      14 Ahmad M, "Deep belief network modeling for automatic liver segmenta-tion" 7 : 20585-20595, 2019

      15 Man Y, "Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net" 38 (38): 1971-1980, 2019

      16 Doi K., "Current status and future potential of computer-aided diagnosis in medical imaging" 78 (78): s3-s19, 2005

      17 Doi K, "Computer-aided diagnosis in medical imaging : his-torical review, current status and future potential" 31 (31): 198-211, 2007

      18 Lebre MA, "Automatic segmentation methods for liver and hepatic vessels from CT and MRI volumes, applied to the Couinaud scheme" 110 : 42-51, 2019

      19 Hoang HS, "An evaluation of CNN-based liver segmentation methods using multi-types of CT abdominal images from multiple medical centers" 20-25, 2019

      20 Akram MU, "An automated system for liver ct enhancement and segmentation" 10 (10): 17-22, 2010

      21 Suzuki K, "A review of computer-aided diagnosis in thoracic and colonic imaging" 2 (2): 163-, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼