1 강민 ; 최남길 ; 한재복 ; 김욱 ; 장영일 ; 송종남, "복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구" 한국방사선학회 9 (9): 9-16, 2015
2 "https://patents.google.com/patent/KR20110124036A/ko"
3 Ronneberger O, "U-net: Convolutional net-works for biomedical image segmentation" 234-241, 2015
4 Gayet B, "Totally laparoscopic right hepatectomy" 194 (194): 685-689, 2007
5 Clark JM, "The prevalence and etiol-ogy of elevated aminotransferase levels in the United States" 98 (98): 960-967, 2003
6 Grubb K, "Surgical clips : a nidus for foreign body reaction after hepatic resection" 15 (15): 363-365, 2005
7 Ferrero A, "Postoperative liver dysfunction and future remnant liver : where is the limit?" 31 (31): 1643-1651, 2007
8 Withey DJ, "Medical image segmentation: Methods and software" 140-143, 2007
9 Chung M, "Liver seg-mentation in abdominal CT images via auto-context neural net-work and self-supervised contour attention" 113 : 102023-, 2021
10 Tschirren J, "Intratho-racic airway trees : segmentation and airway morphology analysis from low-dose CT scans" 24 (24): 1529-1539, 2005
1 강민 ; 최남길 ; 한재복 ; 김욱 ; 장영일 ; 송종남, "복부 CT 검사 시 이중에너지 기법을 통한 적정한 조영제 양에 관한 연구" 한국방사선학회 9 (9): 9-16, 2015
2 "https://patents.google.com/patent/KR20110124036A/ko"
3 Ronneberger O, "U-net: Convolutional net-works for biomedical image segmentation" 234-241, 2015
4 Gayet B, "Totally laparoscopic right hepatectomy" 194 (194): 685-689, 2007
5 Clark JM, "The prevalence and etiol-ogy of elevated aminotransferase levels in the United States" 98 (98): 960-967, 2003
6 Grubb K, "Surgical clips : a nidus for foreign body reaction after hepatic resection" 15 (15): 363-365, 2005
7 Ferrero A, "Postoperative liver dysfunction and future remnant liver : where is the limit?" 31 (31): 1643-1651, 2007
8 Withey DJ, "Medical image segmentation: Methods and software" 140-143, 2007
9 Chung M, "Liver seg-mentation in abdominal CT images via auto-context neural net-work and self-supervised contour attention" 113 : 102023-, 2021
10 Tschirren J, "Intratho-racic airway trees : segmentation and airway morphology analysis from low-dose CT scans" 24 (24): 1529-1539, 2005
11 Abdalla EK, "Improving resectability of hepatic colorectal metasta-ses : expert consensus statement" 13 (13): 1271-1280, 2006
12 Starzl TE, "Evolution of liver transplantation" 2 (2): 614-, 1982
13 Yao AD, "Deep learning in neu-roradiology: a systematic review of current algorithms and approaches for the new wave of imaging technology" 2 (2): e190026-, 2020
14 Ahmad M, "Deep belief network modeling for automatic liver segmenta-tion" 7 : 20585-20595, 2019
15 Man Y, "Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net" 38 (38): 1971-1980, 2019
16 Doi K., "Current status and future potential of computer-aided diagnosis in medical imaging" 78 (78): s3-s19, 2005
17 Doi K, "Computer-aided diagnosis in medical imaging : his-torical review, current status and future potential" 31 (31): 198-211, 2007
18 Lebre MA, "Automatic segmentation methods for liver and hepatic vessels from CT and MRI volumes, applied to the Couinaud scheme" 110 : 42-51, 2019
19 Hoang HS, "An evaluation of CNN-based liver segmentation methods using multi-types of CT abdominal images from multiple medical centers" 20-25, 2019
20 Akram MU, "An automated system for liver ct enhancement and segmentation" 10 (10): 17-22, 2010
21 Suzuki K, "A review of computer-aided diagnosis in thoracic and colonic imaging" 2 (2): 163-, 2012