In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-meta...
In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-metal (MIM) capacitor and three types of resistors are all integrated in this process. This MPA is a two stage amplifier with all matching components and bias circuits integrated on-chip. A P1dB of 17.7 dBm has been measured with a power gain of 8.7 dB at 3.4 GHz with a total current consumption of 30 mA from a 3 V supply voltage at $25^{\circ}C$. The measured 3 dB bandwidth is 2.7 GHz and the maximum Power Added Efficiency (PAE) is 41 %, which are very good results for a fully integrated Medium PA. The fabricated circuit occupies a die area of $1.7mm{\times}0.8mm$.