Flavin‐based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron‐bifurcating caffeyl‐CoA reductase (CarCDE) catalyzes the reduction of caffeyl‐CoA and ferredoxin by oxidizing N...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O119232079
2018년
-
0014-5793
1873-3468
SCI;SCIE;SCOPUS
학술저널
332-342 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Flavin‐based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron‐bifurcating caffeyl‐CoA reductase (CarCDE) catalyzes the reduction of caffeyl‐CoA and ferredoxin by oxidizing N...
Flavin‐based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron‐bifurcating caffeyl‐CoA reductase (CarCDE) catalyzes the reduction of caffeyl‐CoA and ferredoxin by oxidizing NADH. The 3.5 Å structure of the heterododecameric Car(CDE)4 complex of Acetobacterium woodii, presented here, reveals compared to other electron‐transferring flavoprotein/acyl dehydrogenase family members an additional ferredoxin‐like domain with two [4Fe–4S] clusters N‐terminally fused to CarE. It might serve, in vivo, as specific adaptor for the physiological electron acceptor. Kinetic analysis of a CarCDE(∆Fd) complex indicates the bypassing of the ferredoxin‐like domain by artificial electron acceptors. Site‐directed mutagenesis studies substantiated the crucial role of the C‐terminal arm of CarD and of ArgE203, hydrogen‐bonded to the bifurcating FAD, for FBEB.
Xom induces proteolysis of β‐catenin through GSK3β‐mediated pathway
Reversible optical control of F1Fo‐ATP synthase using photoswitchable inhibitors