RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption

      한글로보기

      https://www.riss.kr/link?id=A104559132

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide (H2S) adsorption at mid-to-high (300 to 500 ℃) temperatures. In order to investigate the critical roles of oxygen contain...

      Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide (H2S) adsorption at mid-to-high (300 to 500 ℃) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the H2S adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the H2S adsorption capacity had been increased about 3.5 times than the pure ZnO.

      더보기

      참고문헌 (Reference)

      1 M. Seredych, "Zinc (hydr)oxide/graphite Based-phase Composites: Effect of the Carbonaceous Phase on Surface Properties and Enhancement in Electrical Conductivity" 22 : 7970-7978, 2012

      2 V. Chandra, "Water-Dispersible Magnetite-reduced Graphene Oxide Composites for Arsenic Removal" 4 : 3979-3986, 2010

      3 M. Seredych, "Visible- Light-Enhanced Interactions of Hydrogen Sulfide with Composites of Zinc (Oxy)hydroxide with Graphite Oxide and Graphene" 28 : 1337-1346, 2012

      4 J. Algdal, "Thin Graphite Overlayers: Graphene and Alkali Metal Intercalation" 601 : 1167-1175, 2007

      5 T.-H. Ko, "The Sorption of Hydrogen Sulfide from Hot Syngas by Metal Oxides over Supports" 58 : 467-474, 2005

      6 J. K. Lee, "Silicon Nanoparticles-graphene Paper Composites for Li Ion Battery Anodes" 46 : 2025-2027, 2010

      7 H. S. Song, "Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods" 51 (51): 10259-10264, 2012

      8 C. Petit, "Revisiting the Chemistry of Graphite Oxides and its Effect on Ammonia Adsorption" 19 : 9176-, 2009

      9 M. Seredych, "Reactive Adsorption of Hydrogen Sulfide on Graphite Oxide/Zr(OH)4 Composites" 166 : 1032-1038, 2011

      10 S. Wu, "Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes" 115 : 15973-15979, 2011

      1 M. Seredych, "Zinc (hydr)oxide/graphite Based-phase Composites: Effect of the Carbonaceous Phase on Surface Properties and Enhancement in Electrical Conductivity" 22 : 7970-7978, 2012

      2 V. Chandra, "Water-Dispersible Magnetite-reduced Graphene Oxide Composites for Arsenic Removal" 4 : 3979-3986, 2010

      3 M. Seredych, "Visible- Light-Enhanced Interactions of Hydrogen Sulfide with Composites of Zinc (Oxy)hydroxide with Graphite Oxide and Graphene" 28 : 1337-1346, 2012

      4 J. Algdal, "Thin Graphite Overlayers: Graphene and Alkali Metal Intercalation" 601 : 1167-1175, 2007

      5 T.-H. Ko, "The Sorption of Hydrogen Sulfide from Hot Syngas by Metal Oxides over Supports" 58 : 467-474, 2005

      6 J. K. Lee, "Silicon Nanoparticles-graphene Paper Composites for Li Ion Battery Anodes" 46 : 2025-2027, 2010

      7 H. S. Song, "Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods" 51 (51): 10259-10264, 2012

      8 C. Petit, "Revisiting the Chemistry of Graphite Oxides and its Effect on Ammonia Adsorption" 19 : 9176-, 2009

      9 M. Seredych, "Reactive Adsorption of Hydrogen Sulfide on Graphite Oxide/Zr(OH)4 Composites" 166 : 1032-1038, 2011

      10 S. Wu, "Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes" 115 : 15973-15979, 2011

      11 T. Lu, "Microwave-assisted Synthesis of Graphene- ZnO Nanocomposite for Electrochemical Supercapacitors" 509 : 5488-5492, 2011

      12 X. Y. Kong, "Metal-semiconductor Zn-ZnO Core-shell Nanobelts and Nanotubes" 108 : 570-574, 2004

      13 H. G. Karge, "Hydrogen Sulfide Adsorption on Faujasite-type Zeolites with Systematically Varied Si-Al Ratios" 64 : 522-532, 1978

      14 S. Lew, "High-temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide-Titanium Dioxide Sorbents" 28 : 535-541, 1989

      15 J. P. Wakker, "High Temperature H2S and COS Removal with MnO and FeO on y- Al2O3 Acceptors" 32 : 139-149, 1993

      16 M. D. Stoller, "Graphene- based Ultracapacitors" 8 : 3498-3502, 2008

      17 S.-T. Yang, "Folding/Aggregation of Graphene Oxide and Its Application in Cu2+ Removal" 351 : 122-127, 2010

      18 O. Mabayoje, "Enhanced Reactive Adsorption of Hydrogen Sulfide on the Composites of Graphene/Graphite Oxide with Copper (Hydr)oxychlorides" 4 : 3316-3324, 2012

      19 H. S. Song, "Effect of Active Zinc Oxide Dispersion on Reduced Graphite Oxide for Hydrogen Sulfide Adsorption at Mid-temperature" 280 : 360-365, 2013

      20 M. V Twigg, "Deactivation of Copper Metal Catalysts for Methanol Decomposition, Methanol Steam Reforming and Methanol Synthesis" 22 : 191-203, 2003

      21 P. Dhage, "Copper-promoted ZnO/SiO2 Regenerable Sorbents for the RoomTemperature Removal of H2S from Reformate Gas Streams" 49 : 8388-8396, 2010

      22 S. Park, "Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents" 9 : 1593-1597, 2009

      23 A. Samokhvalov, "Characterization of Active Sites, Determination of Mechanisms of H2S, COS and CS2 Sorption and Regeneration of ZnO Low-temperature Sorbents: Past, Current and Perspectives" 13 : 3197-3209, 2011

      24 Y. Zhu, "Carbon-based Supercapacitors Produced by Activation of Graphene" 332 : 1537-1541, 2011

      25 N. Li, "Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-free Self-assembly" 21 : 1717-1722, 2011

      26 C. L. Garcia, "Adsorption of Hydrogen Sulfide on ZSM 5 Zeolites" 96 : 2230-2235, 1992

      27 J. A. Rodriguez, "Adsorption and Decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) Surfaces: A First-principles Density Functional Study" 104 : 3630-3638, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-11-01 학술지명변경 한글명 : 청정기술 -> Clean Technology
      외국어명 : CLEAN TECHNOLOGY -> Clean Technology
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-07-04 학술지명변경 한글명 : 한국청정기술학회지 -> 청정기술 KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.26 0.26 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.28 0.4 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼