RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps

      한글로보기

      https://www.riss.kr/link?id=A103791671

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG...

      Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients.

      For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns,which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction αv = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.

      더보기

      참고문헌 (Reference)

      1 Y. Wei, "Turbulence and cavitation models for time-dependent turbulent cavitating flows" 27 (27): 473-487, 2011

      2 D. C. Wilcox, "Turbulence Modeling for CFD" DCW Industries 2006

      3 J. Wu, "Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models" 49 (49): 739-761, 2005

      4 R. J. Dijkers, "Prediction of sheet cavitation in a centrifugal pump impeller with the three-dimensional potential-flow model" 2005

      5 R. B. Medvitz, "Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD" 124 (124): 377-383, 2002

      6 선효성, "Numerical study of hydrofoil geometry effect on cavitating flow" 대한기계학회 26 (26): 2535-2545, 2012

      7 L. Zhou, "Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG k-ε model" 130 (130): 011302.1-011301.7, 2008

      8 Young-Joon An, "Numerical investigation of suction vortices behavior in centrifugal pump" 대한기계학회 25 (25): 767-772, 2011

      9 A. K. Singhal, "Multidimensional simulation of cavitating flows using a PDF model for phase change" 1997

      10 C. C. Tseng, "Modeling for isothermal and cryogenic cavitation" 53 (53): 513-525, 2010

      1 Y. Wei, "Turbulence and cavitation models for time-dependent turbulent cavitating flows" 27 (27): 473-487, 2011

      2 D. C. Wilcox, "Turbulence Modeling for CFD" DCW Industries 2006

      3 J. Wu, "Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models" 49 (49): 739-761, 2005

      4 R. J. Dijkers, "Prediction of sheet cavitation in a centrifugal pump impeller with the three-dimensional potential-flow model" 2005

      5 R. B. Medvitz, "Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD" 124 (124): 377-383, 2002

      6 선효성, "Numerical study of hydrofoil geometry effect on cavitating flow" 대한기계학회 26 (26): 2535-2545, 2012

      7 L. Zhou, "Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG k-ε model" 130 (130): 011302.1-011301.7, 2008

      8 Young-Joon An, "Numerical investigation of suction vortices behavior in centrifugal pump" 대한기계학회 25 (25): 767-772, 2011

      9 A. K. Singhal, "Multidimensional simulation of cavitating flows using a PDF model for phase change" 1997

      10 C. C. Tseng, "Modeling for isothermal and cryogenic cavitation" 53 (53): 513-525, 2010

      11 A. K. Singhal, "Mathematical basis and validation of the full cavitation model" 124 (124): 617-624, 2002

      12 N. Lu, "LES of unsteady cavitation on the delft twisted foil" 22 (22): 784-791, 2010

      13 D. Liu, "LES numerical simulation of cavitation bubble shedding on ALE 25 and ALE 15 hydrofoils" 21 (21): 807-813, 2009

      14 R. E. Bensow, "Implicit LES predictions of the cavitating flow on a propeller" 132 (132): 041302.1-041301.10, 2010

      15 S. T. Johanson, "Filter-based unsteady RANS computations" 25 (25): 10-21, 2004

      16 L. Tan, "Experiment and numerical simulation of cavitation performance for centrifugal pump with inlet guide vane" 46 (46): 177-182, 2010

      17 O. C. Delgosha, "Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation" 125 (125): 38-45, 2003

      18 B. Huang, "Evaluation of a filter-based model for computations of cavitating flows" 28 (28): 1-4, 2011

      19 H. Liu, "Effects of blade number on characteristics of centrifugal pumps, Chinese" 23 (23): 742-747, 2010

      20 I. Mejri, "Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three Inducers" 128 (128): 1308-1323, 2006

      21 Y. Wang, "CFD simulation on cavitation characteristics in centrifugal pump" 29 (29): 99-103, 2011

      22 P. Zwart, "A two-phase model for predicting cavitation dynamics" 2004

      23 H. Liu, "3D PIV test of inner flow in a double blade pump impeller" 25 (25): 491-497, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼